Aprendiendo de Nuestro Cerebro Cómo Aprender

  1. Lilia Mestas Hernández 1
  2. Fernando Gordillo León 2
  1. 1 Universidad Nacional Autónoma de México
    info

    Universidad Nacional Autónoma de México

    Ciudad de México, México

    ROR https://ror.org/01tmp8f25

  2. 2 Universidad Camilo José Cela
    info

    Universidad Camilo José Cela

    Villanueva de la Cañada, España

    ROR https://ror.org/03f6h9044

Revista:
Revista Neuropsicología, Neuropsiquiatría y Neurociencias

ISSN: 0124-1265

Año de publicación: 2021

Volumen: 21

Número: 1

Páginas: 25-42

Tipo: Artículo

Otras publicaciones en: Revista Neuropsicología, Neuropsiquiatría y Neurociencias

Resumen

En las últimas décadas las tecnologías aplicadas al ámbito educativo han permitido incrementar la motivación y el rendimiento académico de los alumnos. Sin embargo, hasta la fecha no queda claro cómo los procedimientos utilizados han permitido estas mejoras, porque no se han analizado en profundidad sus efectos sobre el procesamiento de la información. Recientes investigaciones informan que estos efectos podrían explicarse porque las estrategias utilizadas simularían y, por lo tanto, facilitarían el propio funcionamiento del cerebro. En esta revisión narrativa se profundiza en este punto, en paradigmas concretos como los mapas conceptuales, la repetición, el aprendizaje basado en problemas y la realidad aumentada. En todos ellos se observa que los beneficios sobre el aprendizaje derivan de una superposición de funciones; es decir, de una “imitación” en los procesos educativos del funcionamiento de las estructuras cerebrales que procesan la información, que en último término potencian las conexiones sinápticas incrementando los niveles de neurotransmisores como la dopamina y la acetilcolina, y favoreciendo los procesos de almacenamiento de la información. Se debería profundizar en todos estos aspectos con el objetivo de crear un modelo educativo que favorezca el rendimiento de los alumnos a través de la simbiosis funcional entre educación y neuropsicología.

Referencias bibliográficas

  • Aguirre-Pérez, D. M., Otero-Ojeda, G. A., Pliego-Rivero, F. B., yFerreira-Martínez, A. A. (2007). Relationship of working memory and EEG to academic performance: A study among high school students. The International Journal of Neuroscience, 117(6), 869-882. https://doi.org/10.1080/00207450600910077
  • Anderson, O. R. (1992). Some interrelationships between constructivist models of learning and current neurobiological theory, with implications for science education. Journal of Research in Science Teaching, 29(10), 1037-1058. https://doi.org/10.1002/tea.3660291004
  • Ausubel, D. P. (1968). Educational psychology: A cognitive viewpoint. Rinehart and Winston.
  • Ausubel, D. P. (2000) The acquisition and retention of knowledge: A cognitive view. Kluwer Academic Publishers, Dordrect.
  • Baddeley, A. D. (1986). Working Memory. Oxford University Press.
  • Baddeley, A. D. (1990). Human Memory: Theory and Practice. Allyn and Bacon.
  • Bara, G., yXhomara, N. (2020). The effect of student-centered teaching and problem-based learning on academic achievement in science. Journal of Turkish Science Education, 17(2), 180-199.https://doi.org/10.36681/tused.2020.20
  • Bartlett, F. C. (1932). Remembering: A study in experimental and social psychology. Cambridge University Press.
  • Bartsch, L. M., Singmann, H.,yOberauer, K. (2018). The effects of refreshing and elaboration on working memory performance, and their contributions to long-term memory formation. Memory & Cognition,46(5), 796-808. https://doi.org/10.3758/s13421-018-0805-9
  • Blázquez, A. (2017). Realidad aumentada en educación. Monográfico (Manual). UPM.
  • Botta, F., Santangelo, V., Raffone, A., Sanabria, D., Lupiáñez, J., yOlivetti Belardinelli, M. (2011). Multisensory integration affects visuo-spatial working memory.JournalofExperimentalPsychology:HumanPerceptionandPerformance, 37(4),1099 1109. https://doi.org/10.1037/a0023513
  • Bowers, J. S. (2016). The practical and principled problems with educational neuroscience. Psychological Review, 123(5), 600-612. https://doi.org/10.1037/rev0000025
  • Bramão, I., Karlsson, A., yJohansson, M. (2017). Mental reinstatement of encoding context improves episodic remembering. Cortex, 94, 15-26. https://doi.org/10.1016/j.cortex.2017.06.007
  • Campeanu, S., Craik, F.I., yAlain, C. (2015). Speaker's voice as a memory cue. International Journal of Psychophysiology, 95(2), 167-174.https://doi.org/10.1016/j.ijpsycho.2014.08.988
  • Cañas, A. J., Reiska, P., yMöllits, A. (2017). Developing Higher-Order thinking skills with concept mapping: A case of pedagogic frailty. Knowledge Management & E-Learning, 9, 348-365.
  • Cowan, N. (2001). The magical number 4 in short-term memory: A reconsideration of mental storage capacity. Behavioral and Brain Sciences, 24(1), 87-114.https://doi.org/10.1017/S0140525X01003922
  • Dando, C.J., Wilcock, R., yMilne, R. (2009). The cognitive interview: The efficacy of a modified mental reinstatement of context procedure for frontline police investigators. Applied Cognitive Psychology, 23(1), 138-147.https://doi.org/10.1002/acp.1451
  • Davies, G., yMilne, A. (1985). Eyewitness composite construction. A function of mental or physical reinstatement of context. Criminal Justiceand Behaviour, 12(2), 209-220.https://doi.org/10.1177/0093854885012002004
  • Davies, M. (2012). Concept mapping, mind mapping and argument mapping: What are the differences and do they matter? Higher Education, 62(3), 279-301. https://doi.org/10.1007/s10734-010-9387-6
  • Davis, H. P., ySquire, L. R. (1984). Protein synthesis and memory: Areview. Psychological Bulletin, 96(3), 518–559.
  • de Kloet, E. R., Oitzl, M. S., yJoels, M. (1999). Stress and cognition: Are corticosteroids good or bad guys? Trends Neurosciences,22(10),422-426.https://doi.org/10.1016/s0166-2236(99)01438-1
  • Deslauriers,L., Schelew E., yWieman C. (2011): Improved learning in a large-enrollment physics class. Science,332(6031), 862-864.https://doi.org/10.1126/science.1201783
  • Dubuc, M. M., Aubertin-Leheudre, M., y Karelis, A. D. (2020). Relationship between interference control and working memory with academic performance in high school students: The Adolescent Student Academic Performance longitudinal study (ASAP). Journal of Adolescence, 80, 204-2013.https://doi.org/10.1016/j.adolescence.2020.03.001
  • Dunlosky, J., Rawson, K. A., Marsh, E. J., Nathan, M. J., yWillingham, D. T. (2013). Improving students’ learning with effective learningtechniques: Promising directions from cognitive and educational psychology. Psychological Science in the Public Interest, 14(1),4-58.https://doi.org/10.1177/1529100612453266
  • Ebbinghaus, H. (1913). Memory(H. A. Ruger yC. E. Bussenius, Trans.). Teachers College, Columbia University. (Original work published 1885).
  • Fisher, R. P.,yCraik, F. I.M. (1980). The effects of elaboration on recognition memory. Memory & Cognition, 8, 400-404.https://doi.org/10.3758/BF03211136
  • Freeman, S., Eddy, S. L., McDonough, M., Smith, M. K., Okoroafor, N., Jordt, H., yWenderoth, M. P. (2014): Active learning increases student performance in science, engineering, and mathematics. Procedings of the National Academy of Sciences,111(23), 8410-8415.https://doi.org/10.1073/pnas.1319030111
  • Froemke, R. C., Carcea, I., Barker, A. J., Yuan, K., Seybold, B. A., Martins, A. R. O., Zaika, N., Bernstein, H., Wachs, M., Levis, P. A., Polley, D. B., Merzenich, M. M., ySchreiner, C. E. (2013). Long-term modification of cortical synapses improves sensory perception. NatureNeuroscience, 16, 79-88.https://doi.org/10.1038/nn.3274
  • Garcia-Jimenez, J. (1995). La imagen narrativa. Thomson Paraninfo.Gazcón, N., Larregui, J., yCastro, S. (2016). La Realidad Aumentada como complemento motivacional. Libros Aumentados y Reconstrucción 3D. Revista Iberoamericana de Educación en Tecnología y Tecnología en Educación, 17, 7-15.
  • Goldberg, E. (2001). The executive brain: Frontal lobes and the civilized mind. Oxford University Press.
  • Gómez, G., Rodríguez, C., y Marín, J. A. (2020). The transcendence of Augmented Reality in student motivation. A systematic review and meta-analysis. Alteridad Revista de Educación, 15(1), 36-46.https://doi.org/10.17163/alt.v15n1.2020.03
  • Hammond, L., Wagstaff, G.F., yCole, J. (2006). Facilitating eyewitness memory in adults and children with context reinstatement and focused meditation. Journal of Investigative Psychology and Offender Profiling, 3(2), 117-130.https://doi.org/10.1002/jip.
  • Heckers, S., Weiss, A. P., Alpert, N. M., ySchacter, D. L. (2002). Hippocampal and brain stem activation during word retrieval after repeated and semantic encoding. Cerebral Cortex,12(9),900–907. https://doi.org/10.1093/cercor/12.9.900
  • Heikkilä, J., y Tiippana, K. (2016). School-aged children can benefit from audiovisual semantic congruency during memory encoding. Experimental Brain Research, 234(5), 1199-1207.https://doi.org/10.1007/s00221-015-4341-6
  • Hockley, W.E. (2008). The effects of environmental context on recognition memory and claims of remembering. Journal of Experimental Psychology: Learning, Memory, and Cognition, 34(6), 1412-1429.https://doi.org/10.1037/a0013016
  • Hockley, W.E., Bancroft, T.D., yBryant, E. (2012). Associative and familiarity-based effects of environmental context on memory. Canadian Journal of Experimental Psychology/Revue Canadienne de Psychologie Expérimentale, 66(2), 81-89. https://doi.org/10.1037/a0027136
  • Hübener, M., y Bohoeffer, T. (2014). Neuronal plasticity: Beyond the critical period. Cell, 159(4), 727-737. https://doi.org/10.1016/j.cell.2014.10.035
  • Kalyuga, S. (2013). Effects of learner prior knowledge and working memory limitations on multimedia learning. Procedia Social and Behavioral Sciences 83, 25-29.https://doi.org/10.1016/j.sbspro.2013.06.005
  • Kang, S. H. K. (2016). Spaced eepetition promotes efficient and effective learning: Policy implications for instruction. Behavioral and Brain Sciences, 3(1), 12-19.https://doi.org/10.1177/2372732215624708
  • Karakuyu, Y. (2010). The effect of concept mapping on attitude and achievement in a physics course. International Journal of Physical Sciences, 5, 724-737.
  • Karpicke, J. D. (2017). Retrieval-based learning: A decade of progress. En J. H. Byrne (Series Eds.),Learning and memory: A comprehensive reference(2a. ed., pp. 487-514). Academic Press.https://doi.org/10.1016/B978-0-12-809324-5.21055-9
  • Karpicke, J. D., y Blunt, J. R. (2011). Retrieval practice produces more learning than elaborative studying with concept mapping. Science, 331(6018),772-775.https://doi.org/10.1126/science.1199327
  • Kim, E. J., Pellman, B., & Kim, J. J. (2015). Stress effects on the hippocampus: Acritical review. Learning & Memory, 22(9), 411-416. https://doi.org/10.1101/lm.037291.114
  • Kinchin, I.M. (2011). Visualising knowledge structures in biology: Discipline, curriculum and student understanding. Journal of Biological Education, 45(4), 183-189.https://doi.org/10.1080/00219266.2011.598178
  • Kompus, K., Olsson, C.-J., Larsson, A., yNyberg, L. (2009). Dynamic switching between semantic and episodic memory systems. Neuropsychologia,47(11),2252–2260. https://doi.org/10.1016/j.neuropsychologia.2008.11.031
  • Lupien, S. J., & McEwen, B. S. (1997). The acute effects of corticosteroids on cognition: Integration of animal and human model studies. Brain Research Reviews 24(1),1-27.https://doi.org/10.1016/s0165-0173(97)00004-0
  • Maguire, E. A. (2001). Neuroimaging studies of autobiographical event memory.Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 356(1413), 1441–1451. https://doi.org/10.1098/rstb.2001.0944
  • Markant, D. B., Ruggeri, A., Gureckis, T. M., yXu, F. (2016). Enhanced memory as a common effect of active learning. Mind, Brain and Education, 10(3), 142-152.https://doi.org/10.1111/mbe.12117
  • Matusz, P. J., Wallace, M. T., y Murray, M. M. (2017). A multisensory perspective on object memory. Neuropsychologia, 105, 243-252.https://doi.org/10.1016/j.neuropsychologia.2017.04.008
  • Miller, G. A. (1956). The magical number seven, plus or minus two: Some limits on our capacity for processing information. Psychological Review, 63(2),81-97.https://doi.org/10.1037/h0043158
  • Montecé-Mosquera, F., Verdesoto-Arguello, A., Montecé-Mosquera, C., yCaicedo-Camposano, C. (2017). Impacto de la realidad aumentada en la educación del siglo XXI. European Scientific Journal, 13(25), 129-137. https://doi.org/10.19044/esj.2017.v13n25p129
  • Moreno-Sánchez, I., y Jiménez, J. (2016). Una perspectiva neurobiológica y comunicacional de la imagen y de la realidad aumentada. ICONO, 16(1), 1. https://doi.org/10.7195/ri14.v16i1.1102
  • Nesbit, J. C., y Adesope, O. O. (2006). Learning with concept and knowledge maps: A meta-analysis. Review of Educational Research, 76(3),413-448.https://doi.org/10.3102/00346543076003413
  • Novak, J. D., y Cañas, A. J. (2006). The theory underlying concept maps and how to construct them. Technical report IHMC CmapTools
  • Novak, J. D., y Gowin, D. B. (1984) Learning how to learn. Cambridge University Press.
  • Ortega-Tudela, J. M., Lechuga, M. T., y Gómez-Ariza, C. J. (2019). A specific benefit of retrieval-based concept mapping to enhance learning from texts. Instructional Science, 47, 239-255.
  • Owens, M. T., yTanner, K. D. (2017). Teaching as brain changing: Exploring connections between neuroscience and innovative teaching. CBE Life Sciences Education, 16(2), fe2. https://doi.org/10.1187/cbe.17-01-0005
  • Prendes, C. (2015). Realidad aumentada y educación: análisis de experiencias prácticas Pixel-Bit. Revista de Medios y Educación, 46, 187-203. https://doi.org/10.12795/pixelbit.2015.i46.12
  • Reagh, Z. M., Murray, E. A., y Yassa, M. A. (2017). Repetition reveals ups and downs of hippocampal, thalamic and neocortical engagement during mnemonic decisions. Hippocampus 27(2),169-183. https://doi.org/10.1002/hipo.22681
  • Reed, A., Riley, J., Carraway, R., Carrasco, A., Perez, C., Jakkamsetti, V., yKilgard, M. P. (2011). Cortical map plasticity improves learning but is not necessary forimproved performance. Neuron, 70, 121-31.https://doi.org/10.1016/j.neuron.2011.02.038
  • Reh, R. K., Dias, B. G., Nelson III, C. A., Kaufer, D., Werker, J. F., Kolb, B., Levine, J. D., & Hensch, T. K. (2020). Critical period regulation across multiple timescales. PANAS, 117(38), 23242-23251. https://doi.org/10.1073/pnas.1820836117
  • Salmerón, L. (2011). ¿Por qué realizar un examen mejora nuestro aprendizaje? Lecciones científicas y educativas del efecto del test. Ciencia Cognitiva, 5(1), 19-21.
  • Schaal, S. (2010). Cognitive and motivational effects of digital concept maps in pre-service science teacher training. Procedia Social and Behavioral Sciences, 2(2), 640-647.https://doi.org/10.1016/j.sbspro.2010.03.077
  • Schultz, W., y Dickinson, A. (2000). Neuronal coding of prediction errors. Annual Review of Neuroscience,23(1), 473-500. https://doi.org/10.1146/annurev.neuro.23.1.473
  • Solaz-Portolés, J. J., y Sanjosé-López, V. (2009). Working memory in science problema solving: A review of research. Revista Mexicana de Psicología, 26(1), 79-90.
  • Stern, S. A., yAlberini, C. M. (2013). Mechanisms of memory enhancement. Wiley Interdisciplinary Reviews. Systems Biology and Medicine, 5(1),37-53. https://doi.org/10.1002/wsbm.1196
  • Takeuchi, T., Duszkiewicz, A. J., yMorris, R. G. M. (2014). The synaptic plasticity and memory hypothesis: Encoding, storage and persistence. Philosophical Transactions of the Royal Society B, 369, 1-14.https://doi.org/10.1098/rstb.2013.0288
  • Tulving, E., yThomson, D.M. (1973). Encoding specificity and retrieval processes in episodic memory.Psychological Review, 80(5), 359-380.https://doi.org/10.1037/h0020071
  • Ueno, D., Masumoto, K., Sutani, K., yIwaki, S. (2015). Latency of modality-specific reactivation of auditory and visual information during episodic memory retrieval. Neuroreport, 26(6), 303-308.https://doi.org/10.1097/WNR.0000000000000325
  • Valerio, G., y Valenzuela, J. R. (2011).Redes sociales y estudiantes universitarios: Del nativo digital al informívoro saludable. El Profesional de la Información, 20(6), 667-670.https://doi.org/10.3145/epi.2011.nov.10
  • Vidal-Ledo, M., Lío Alonso, B., Santiago Garrido, A., Muñoz Hernández, A., Morales Suárez, I., y Toledo Fernández, A. (2017). Realidad aumentada. Educación Médica Superior, 31(2). Recuperado de http://ems.sld.cu/index.php/ems/article/view/1161/515
  • Wong, C.K., y Read, J.D. (2011). Positive and negative effects of physical context reinstatement on eyewitness recall and identification. Applied Cognitive Psychology, 25(1), 2-11.https://doi.org/10.1002/acp.1605
  • Wong, R. O., & Lichtman, J. W. (2003). Synapse elimination. En L. R. Squire, Fe. E. Bloom, S. K. McConnell, J. L. Roberts, N. C. Spitzer y M. J. Zigmond (Eds.),Fundamentalneuroscience(pp. 533-554). Academic Press.
  • Yang, J. J., Zhan, L. X., Wang, Y. Y., Du, X. Y., Zhou, W. X., Ning, X. L., Sun, Q., yMoscovitch, M. (2016). Effects of learning experience on forgetting rates of item and associative memories. Learning & Memory,23(7),365-378. https://doi.org/10.1101/lm.041210.115
  • Yerkes, R. M., yDodson, J. D. (1908). The relation of strength of stimulus to rapidity of habit-formation. Journal ofComparative Neurological Psychology, 18(5),458-482. https://doi.org/10.1002/cne.920180503
  • Zadina, J. N. (2015). The emerging role of educational neuroscience in education reform. Psicología Educativa, 21(2), 71-77. https://doi.org/10.1016/j.pse.2015.08.005
  • Zhan, L., Guo, D., Chen, G., YYang, J. (2018). Effects of repetition learning on associative recognition overtime: Role of the hippocampus and prefrontal cortex. Frontiers in Human Neuroscience, 12, 277. https://doi.org/10.3389/fnhum.2018.00277
  • Zhang, Y., Han, K., Worth, R., yLiu, Z. (2020). Connecting concepts in the brain by mapping cortical representations of semantic relations. Nature Comunications, 11, 1877. https://doi.org/10.1038/s41467-020-15804-w