Pattern detection platform using disruptive technologies to improve people’s daily tasks

  1. Sales Mendes, André Filipe
Dirixida por:
  1. Juan Francisco de Paz Santana Director
  2. Gabriel Villarrubia González Co-director

Universidade de defensa: Universidad de Salamanca

Fecha de defensa: 10 de xuño de 2022

Tribunal:
  1. Javier Bajo Pérez Presidente/a
  2. Vivian Félix López Batista Secretaria
  3. Valderi Reis Quietinho Leithardt Vogal
Departamento:
  1. INFORMÁTICA Y AUTOMÁTICA

Tipo: Tese

Teseo: 730593 DIALNET lock_openTESEO editor

Resumo

En los últimos años la miniaturización de los dispositivos electrónicos y el abaratamiento de los procesos de fabricación de los componentes ha permitido que las redes de sensores inalámbricas sean cada vez mas importantes y se empleen en multitud de casos. Adicionalmente, y debido en parte a la mejora en cuanto a las capacidades de almacenamiento y procesamiento de datos se refiere, ha permitido construir sistemas sensibles al contexto en áreas como la medicina, la monitorización o la robótica que permiten hacer un análisis detallado y adaptable de los procesos y servicios que se pueden proporcionar a los usuarios. Esta tesis doctoral ha sido conformada mediante un “Compendio de Artículos” donde se analiza la aplicación de paradigmas de inteligencia artificial en 3 casos de estudio claramente diferenciados. Se ha planteado un novedoso sistema de localización en interiores que hace uso de técnicas bayesianas y fingerprinting, con objeto de automatizar y facilitar los procesos de adquisición de datos de calibración. A mayores, se presenta un exoesqueleto que es conectado a una arquitectura sensible al contexto con objeto de que los pacientes de rehabilitación hagan ejercicios de forma interactiva y haciendo uso de técnicas de realidad aumentada. En el último artículo, se hace hincapié en el diseño de una plataforma que hace uso de las redes inalámbricas de sensores, con objeto de monitorizar el estado de los aseos mediante la incorporación de agentes embebidos en dispositivos limitados computacionalmente. Esta información descentralizada es analizada con objeto de detectar posibles anomalías y facilitar la toma de decisiones. Uno de los principales hitos que pretendo con mi estudio, es mostrar a la comunidad científica los diferentes resultados que he obtenido en mi investigación, solventando problemas cotidianos que han sido resueltos mediante la modelización de los casos de estudio mediante la utilización de arquitecturas multi-agente y sistemas expertos. El filtrado de señales, la utilización de clasificadores, minería de datos y la utilización de otras técnicas de Inteligencia Artificial han sido empleadas para la consecución exitosa de este trabajo.