Agriculture Land Degradation in Chile

  1. Francos, Marcos
Libro:
The Handbook of Environmental Chemistry

ISSN: 1867-979X 1616-864X

Año de publicación: 2022

Tipo: Capítulo de Libro

DOI: 10.1007/698_2022_921 GOOGLE SCHOLAR lock_openAcceso abierto editor

Resumen

Soil is one of the most important and non-renewable elements of the environment. In order to improve income and increase productivity from the soil, various techniques (e.g. tillage) and substances (e.g. pesticides, fertilisers) have been employed. The use of these techniques and substances increased soil degradation. This is coupled with other socioeconomic processes that occurred in recent years, such as the land-use change from forest areas to agricultural lands. For this reason, in recent decades, awareness has been raised about these issues, and various regulations have been dictated on the need to protect the environment and the soil in agricultural areas, identify sustainable practices to implement in agricultural areas, control the number of fertilisers and pesticides used, and protect the mosaic of territories to avoid further degradation.

Referencias bibliográficas

  • Lu TLD (2005) The origin and dispersal of agriculture and human diaspora in East Asia. In: Lu TLD (ed) The peopling of East Asia. Routledge, London, pp 75–86
  • Wallace M, Jones G, Charles M, Forster E, Stillman E, Bonhomme V, Livarda A, Osborne CP, Rees M, Frenck G, Preece C (2019) Re-analysis of archaeobotanical remains from pre-and early agricultural sites provides no evidence for a narrowing of the wild plant food spectrum during the origins of agriculture in southwest Asia. Veg Hist Archaeobotany 28(4):449–463
  • Iriarte J, Elliott S, Maezumi SY, Alves D, Gonda R, Robinson M, de Souza JG, Watling J, Handley J (2020) The origins of Amazonian landscapes: plant cultivation, domestication and the spread of food production in tropical South America. Quaternary Sci Rev 248:106582
  • Snir A, Nadel D, Groman-Yaroslavski I, Melamed Y, Sternberg M, Bar-Yosef O, Weiss E (2015) The origin of cultivation and proto-weeds, long before Neolithic farming. PLoS One 10(7):e0131422
  • Jones G, Kluyver T, Preece C, Swarbrick J, Forster E, Wallace M, Charles M, Rees M, Osborne CP (2020) The origins of agriculture: intentions and consequences. J Archaeol Sci 125:105290
  • Flannery KV (1973) The origin of agriculture. Ann Rev Anthropol 2:271–310
  • Harlan JR (1992) Crops and man. American Society of Agronomy, Madison
  • Cokkizgin A, Shtaya MJ (2013) Lentil: origin, cultivation techniques, utilisation and advances in transformation. Agr Sci 1(1):55–62
  • Conedera M, Krebs P, Tinner W, Pradella M, Torriani D (2004) The cultivation of Castanea sativa (Mill.) in Europe, from its origin to its diffusion on a continental scale. Veget Hist Archaeobot 13:161–179
  • Lu TLD (1999) The transition from foraging to farming and the origin of agriculture in China. British Archaeological Reports Limited
  • Khush GS (1997) Origin, dispersal, cultivation and variation of rice. Plant Mol Biol 35:25–34
  • Reed CA (2011) Origins of agriculture. Walter de Gruyter, Berlin
  • Chang KC (1970) The beginnings of agriculture in the Far East. Antiquity 44:75–85
  • Flannery KV (1968) Archeological systems theory and early Mesoamerica. In: Meggers B (ed) Anthropological archeology in the Americas. Anthropological Society, Washington, pp 67–87
  • Santana-Sagredo F, Uribe M, Herrera MJ, Retamal R, Flores S (2015) Dietary practices in ancient populations from northern Chile during the transition to agriculture (Tarapacá region, 1000 BC–AD 900). Am J Phys Anthropol 158(4):751–758
  • Atencio LN (1982) Temprana emergencia de sedentarismo en el desierto chileno: proyecto Caserones. Chungara:80–122
  • Muñoz I (2004) El periodo Formativo en los valles del norte de Chile y sur de Perú: Nuevas evidencias y comentarios. Chungará 36:213–225
  • Watson JT, Arriaza B, Standen V, Muñoz Ovalle I (2013) Tooth wear related to marine foraging, agro-pastoralism and the formative transition on the northern Chilean coast. Int J Osteoarchaeol 23(3):287–302
  • Knudson KJ, Torres-Rouff C (2009) Investigating cultural heterogeneity in San Pedro de Atacama, northern Chile, through biogeochemistry and bioarchaeology. Am J Phys Anthropol 138(4):473–485
  • Köppen W (1900) Versuch einer Klassifikation der Klimate, vorzugsweise nach ihren Beziehungen zur Pflanzenwelt. Geogr Zeitschrift 6(593–611):657–679
  • Wright ACS (1963) The soil process and the evolution of agriculture in northern Chile. Pac Viewp 4(1):65–74
  • Sandor JA, Huckleberry G, Hayashida FM, Parcero-Oubiña C, Salazar D, Troncoso A, Ferro-Vázquez C (2021) Soils in ancient irrigated agricultural terraces in the Atacama Desert, Chile. Geoarcheology:1–24. https://doi.org/10.1002/gea.21834
  • Stevenson CM, Jackson TL, Mieth A, Bork HR, Ladefoged TN (2006) Prehistoric and early historic agriculture at Maunga Orito, Easter Island (Rapa Nui), Chile. Antiquity 80(310):919
  • Hellin J, Lundy M, Meijer M (2009) Farmer organisation, collective action and market access in Meso-America. Food Policy 34(1):16–22
  • Robles C (2020) The agrarian historiography of Chile: Foundational interpretations, conventional reiterations, and critical revisionism. Hist Agrar 8:93–122
  • Monzón VH, Avendaño-Soto P, Araujo RO, Garrido R, Mesquita-Neto JN (2020) Avocado crops as a floral resource for native bees of Chile. Rev Chil Hist Nat 93:1–7
  • Oficina de Estudios y Políticas Agrarias (ODEPA) (2017) Panorama de la agricultura chilena. Ministerio de Agricultura, Santiago. https://www.odepa.gob.cl/wp-content/uploads/2017/12/panoramaFinal20102017Web.pdf
  • Muñoz-Schick C, Mattar Bader C, Neira Roa R, Mora González M, Espinoza J, Seguel Seguel O, Salazar Guerrero O, Fuster Gómez R, Lizana A, Cofré C, Pinheiro A, Rodríguez L (2017) Sustainable agriculture and healthy food in Chile. In: Asenjo J, McNeil J (eds) Challenges and opportunities for food and nutrition security in the Americas, the view of academies of science. Federal Ministry of Education and Research, The Inter-American Network of Academies of Sciences, Leopoldina National Akademie der Wissenschaften and The InterAcademy Partnership. http://repositorio.uchile.cl/handle/2250/147838, pp 190–211
  • Curkovic T, Araya J, Canales C, Medina A (2005) Evaluation of two agriculture detergents as control alternatives for green peach aphid and twospotted spidermite, two pests affecting peach orchards in Chile. In: VI international peach symposium, vol 713, pp 405–408
  • Rodríguez-San Pedro A, Allendes JL, Beltrán CA, Chaperon PN, Saldarriaga-Córdoba MM, Silva AX, Grez AA (2020) Quantifying ecological and economic value of pest control services provided by bats in a vineyard landscape of central Chile. Agric Ecosyst Environ 302:107063
  • Cruz GE, Rodriguez FA, Tapia PA, Bown HE (2018) Respuestas en crecimiento después de un raleo con árboles futuro y un raleo por lo bajo en un bosque secundario de Nothofagus pumilio, en Tierra del Fuego, Chile. Cienc Investig Agrar 45(3):263–276
  • Von Bennewitz E, Sanhueza S, Elorriaga A (2010) Effect of different crop load management strategies on fruit production and quality of sweet cherries (Prunus avium L.) ‘Lapins’ in Central Chile. J Fruit Ornam Plant Res 18(1):51–57
  • Martínez I, Ovalle C, Del Pozo A, Uribe H, Valderrama N, Prat C, Sandoval M, Fernández F, Zagal E (2011) Influence of conservation tillage and soil water content on crop yield in dryland compacted Alfisol of Central Chile. Chil J Agr Res 71(4):615–622
  • Tang FH, Lenzen M, McBratney A, Maggi F (2021) Risk of pesticide pollution at the global scale. Nat Geosci 14:206–210
  • Aroca GE, Ramírez ME, Robotham H, Avila M (2020) Morphological and reproductive studies on the green filamentous pest Rhizoclonium-like affecting Agarophyton chilensis commercial farms in southern Chile. Aquat Bot 167:103291
  • Figueroa CC, Simon JC, Le Gallic JF, Prunier-Leterme N, Briones LM, Dedryver CA, Niemeyer HM (2005) Genetic structure and clonal diversity of an introduced pest in Chile, the cereal aphid Sitobion avenae. Heredity 95(1):24–33
  • Larraín S (2002) Incidencia de insectos y ácaros plagas en pepino dulce (Solanum muricatum Ait.) cultivado en la IV región, Chile. Agr Téc 62(1):15–26
  • Ellena M, Sandoval P, Gonzalez A, Montenegro A, Jequier J, Contreras M, Azocar G (2012) Preliminary observations on the effects of soil management techniques on hazelnut growing in the Gorbea area, in the South of Chile. In: VIII international congress on hazelnut, vol 1052, pp 225–230
  • Ortega-Blu R, Molina-Roco M (2016) Evaluation of vegetation indices and apparent soil electrical conductivity for site-specific vineyard management in Chile. Precis Agric 17(4):434–450
  • Ordóñez I, López IF, Kemp PD, Descalzi CA, Horn R, Zúñiga F, Dörner J (2018) Effect of pasture improvement managements on physical properties and water content dynamics of a volcanic ash soil in southern Chile. Soil Tillage Res 178:55–64
  • Letelier L, Gaete-Eastman C, Peñailillo P, Moya-León MA, Herrera R (2020) Southern species from the biodiversity hotspot of central Chile: a source of color, aroma, and metabolites for global agriculture and food industry in a scenario of climate change. Front Plant Sci 11:1002
  • Fernández FJ, Blanco M, Ponce RD, Vásquez-Lavín F, Roco L (2019) Implications of climate change for semi-arid dualistic agriculture: a case study in Central Chile. Reg Environ Chang 19(1):89–100
  • Fuentealba A, Duran L, Morales NS (2021) The impact of forest science in Chile: history, contribution, and challenges. Can J For Res 51(6):753–765
  • Vicuña S, McPhee J, Garreaud RD (2012) Agriculture vulnerability to climate change in a snowmelt-driven basin in semiarid Chile. J Water Res Plan Manag 138(5):431–441
  • Meza FJ, Wilks DS, Gurovich L, Bambach N (2012) Impacts of climate change on irrigated agriculture in the Maipo Basin, Chile: reliability of water rights and changes in the demand for irrigation. J Water Res Plan Manag 138(5):421–430
  • Calderón R, Palma P, Arancibia-Miranda N, Kim UJ, Silva-Moreno E, Kannan K (2020) Occurrence, distribution and dynamics of perchlorate in soil, water, fertilisers, vegetables and fruits and associated human exposure in Chile. Environ Geochem Health:1–9
  • Bonilla CA, Reyes JL, Magri A (2010) Water erosion prediction using the Revised Universal Soil Loss Equation (RUSLE) in a GIS framework, central Chile. Chile J Agr Res 70(1):159–169
  • Casanova M, Salazar O, Seguel O, Nájera F, Villarroel R, Leiva C (2012) Long-term monitoring of soil fertility for agroforestry combined with water harvesting in Central Chile. Arch Agron Soil Sci 58(sup1):S165–S169
  • Salazar O, Casanova M, Kätterer T (2011) The impact of agroforestry combined with water harvesting on soil carbon and nitrogen stocks in central Chile evaluated using the ICBM/N model. Agric Ecosyst Environ 140(1–2):123–136
  • Poblete D, Vicuña S, Meza F, Bustos E (2012) Water resources modelling under climate change scenarios of Maule River Basin (Chile) with two main water intensive and competing sectors: agriculture and hydropower generation. In: IWA world congress on water, climate and energy
  • Salgado MMDPM (2012) Influence of compost and humic substances on soil and fruit quality in table grape under intensive management in Chile. Doctoral Thesis Dissertation. University of Bonn, Bonn, 138 p
  • Jara-Rojas R, Bravo-Ureta BE, Engler A, Díaz J (2013) An analysis of the joint adoption of water conservation and soil conservation in Central Chile. Land Use Policy 32:292–301
  • Dörner J, Huertas J, Cuevas JG, Leiva C, Paulino L, Arumí JL (2015) Water content dynamics in a volcanic ash soil slope in southern Chile. J Plant Nutr Soil Sci 178(4):693–702
  • Bown HE, Fuentes JP, Martínez AM (2018) Assessing water use and soil water balance of planted native tree species under strong water limitations in Northern Chile. New For 49(6):871–892
  • Gutiérrez-Gamboa G, Carrasco-Quiroz M, Verdugo-Vásquez N, Díaz-Gálvez I, Garde-Cerdán T, Moreno-Simunovic Y (2018) Characterization of grape phenolic compounds of ‘Carignan’ grapevines grafted onto ‘País’ rootstock from Maule Valley (Chile): implications of climate and soil conditions. Chil J Agri R 78(2):310–315
  • Lehnert LW, Thies B, Trachte K, Achilles S, Osses P, Baumann K, Schmidt J, Salomov E, Jung P, Leinweber P, Karsten U, Büdel B, Bendix J (2018) A case study on fog/low stratus occurrence at Las Lomitas, Atacama Desert (Chile) as a water source for biological soil crusts. Aerosol Air Qual Res 18:254–269
  • Meza FJ, Montes C, Bravo-Martínez F, Serrano-Ortiz P, Kowalski AS (2018) Soil water content effects on net ecosystem CO2 exchange and actual evapotranspiration in a Mediterranean semiarid savanna of Central Chile. Sci Rep 8(1):1–11
  • Panez-Pinto A, Mansilla-Quiñones P, Moreira-Muñoz A (2018) Water, soil and sociometabolic fracture of agribusiness. Fruit activity in Petorca, Chile. Bitác Urb Territ 28(3):153–160
  • Reyes Rojas LA, Adhikari K, Ventura SJ (2018) Projecting soil organic carbon distribution in central Chile under future climate scenarios. J Environ Qual 47(4):735–745
  • Brucker E, Spohn M (2019) Formation of soil phosphorus fractions along a climate and vegetation gradient in the Coastal Cordillera of Chile. Catena 180:203–211
  • Francke S, Carrasco L, Carnieletto C, Gándara E, Troncoso J (2019) Soil and water conservation technics as a mechanism to adapt to the impacts of climate change in the Maule River Basin Chile. In: Global symposium on soil erosion, Roma, 310 p
  • Castillo P, Serra I, Townley B, Aburto F, López S, Tapia J, Contreras M (2021) Biogeochemistry of plant essential mineral nutrients across rock, soil, water and fruits in vineyards of Central Chile. Catena 196:104905
  • Fuentes I, Seguel O, Casanova M (2013) Elasto-plastic behaviour of soil aggregates and the soil matrix as a function of physical properties in three soils of central Chile. Soil degradation. Adv Geoecol 42:72–88
  • Seguel CG, Muñoz H, Segovia J, Ávalos B, Martín JR (2019) Assessment of soil contamination in caleta vitor and surrounding areas, northern Chile, due to heavy metal enrichment caused by an abandoned copper mine. Interciencia 44(4):241–246
  • Hernández Á, Arellano EC, Morales-Moraga D, Miranda MD (2016) Understanding the effect of three decades of land use change on soil quality and biomass productivity in a Mediterranean landscape in Chile. Catena 140:195–204
  • Schuller P, Castillo A, Walling DE, Iroume A (2011) Use of fallout Caesium-137 and Beryllium-7 to assess the effectiveness of changes in tillage systems in promoting soil conservation and environmental protection on agricultural land in Chile. In: International Atomic Energy Agency (ed) Impact of soil conservation measures on erosion control and soil quality, pp 241–257
  • Fajardo A, Gundale MJ (2015) Combined effects of anthropogenic fires and land-use change on soil properties and processes in Patagonia, Chile. Forest Ecol Manag 357:60–67
  • Fleige H, Beck-Broichsitter S, Dörner J, Goebel MO, Bachmann J, Horn R (2016) Land use and soil development in southern Chile: effects on physical properties. J Soil Sci Plant Nutr 16(3):818–831
  • Henriquez-Dole LE, Vicuna S, Gironas JA, Meza FJ (2016) Adaptation measures evaluation on agriculture under future climate and land use scenarios in central Chile. In AGU Fall Meeting Abstracts H51A, p 1408
  • Dörner J, Horn R, Dec D, Wendroth O, Fleige H, Zúñiga F (2017) Land-use-dependent change in the soil mechanical strength and resilience of a shallow volcanic ash soil in southern Chile. Soil Sci Soc Am J 81(5):1064–1073
  • Soto L, Galleguillos M, Seguel O, Sotomayor B, Lara A (2019) Assessment of soil physical properties’ statuses under different land covers within a landscape dominated by exotic industrial tree plantations in south-central Chile. J Soil Water Conserv 74(1):12–23
  • Martínez IG, Prat C, Ovalle C, del Pozo A, Stolpe N, Zagal E (2012) Subsoiling improves conservation tillage in cereal production of severely degraded Alfisols under Mediterranean climate. Geoderma 189:10–17
  • Brunel-Saldias N, Seguel O, Ovalle C, Acevedo E, Martínez I (2018) Tillage effects on the soil water balance and the use of water by oats and wheat in a Mediterranean climate. Soil Tillage Res 184:68–77
  • Climent MJ, Herrero-Hernández E, Sánchez-Martín MJ, Rodríguez-Cruz MS, Pedreros P, Urrutia R (2019) Residues of pesticides and some metabolites in dissolved and particulate phase in surface stream water of Cachapoal River basin, central Chile. Environ Pollut 251:90–101
  • Sheng P, Shang X, Sun Z, Yang L, Guo X, Jones MK (2018) North-south patterning of millet agriculture on the Loess Plateau: late neolithic adaptations to water stress, NW China. Holocene 28(10):1554–1563
  • Vila-Traver J, Aguilera E, Infante-Amate J, de Molina MG (2021) Climate change and industrialisation as the main drivers of Spanish agriculture water stress. Sci Total Environ 760:143399
  • Sabbaghi MA, Nazari M, Araghinejad S, Soufizadeh S (2020) Economic impacts of climate change on water resources and agriculture in Zayandehroud river basin in Iran. Agr Water Manage 241:106323
  • Hendricks NP (2018) Potential benefits from innovations to reduce heat and water stress in agriculture. J Assoc Environ Resour Econ 5(3):545–576
  • El-Areed SR (2019) Improvement of yellow corn productivity under water deficit stress using conservation agriculture system. Egypt J Plant Breed 23(1):1–22
  • Adams RM, Rosenzweig C, Peart RM, Ritchie JT, McCarl BA, Glyer JD, Curry RB, Jones JW, Boote KJ, Allen LH (1990) Global climate change and US agriculture. Nature 345(6272):219–224
  • Agovino M, Casaccia M, Ciommi M, Ferrara M, Marchesano K (2019) Agriculture, climate change and sustainability: the case of EU-28. Ecol Indic 105:525–543
  • Wegren SK (2021) Vulnerabilities in Russian agriculture to climate change. Sustain Dev Res 3(1):1–p1
  • Lehtonen HS, Aakkula J, Fronzek S, Helin J, Hildén M, Huttunen S, Kaljonen M, Niemi J, Palosuo T, Pirttioja N, Rokkonen P, Varho V, Carter TR (2021) Shared socioeconomic pathways for climate change research in Finland: co-developing extended SSP narratives for agriculture. Reg Environ Chang 21(1):1–16
  • Cui X (2020) Climate change and adaptation in agriculture: evidence from US cropping patterns. J Environ Econ Manag 101:102306
  • Chen S, Gong B (2021) Response and adaptation of agriculture to climate change: evidence from China. J Dev Econ 148:102557
  • Piao S, Ciais P, Huang Y, Shen Z, Peng S, Li J, Zhou L, Liu H, Ma Y, Ding Y, Friedlingstein P, Liu C, Tan K, Yu Y, Zhang T, Fang J (2010) The impacts of climate change on water resources and agriculture in China. Nature 467(7311):43–51
  • Meza FJ, Vicuña S, Jelinek M, Bustos E, Bonelli S (2014) Assessing water demands and coverage sensitivity to climate change in the urban and rural sectors in central Chile. J Water Clim Change 5(2):192–203
  • Melo O, Foster W (2021) Agricultural and forestry land and labor use under long-term climate change in Chile. Atmos 12(3):305
  • Guibal R, Lissalde S, Leblanc J, Cleries K, Charriau A, Poulier G, Mazzella N, Rebillard JP, Brizard Y, Guibaud G (2018) Two sampling strategies for an overview of pesticide contamination in an agriculture-extensive headwater stream. Environ Sci Pollut R 25(15):14280–14293
  • Xiang T, Malik TH, Nielsen K (2020) The impact of population pressure on global fertiliser use intensity, 1970–2011: an analysis of policy-induced mediation. Technol Forecast Soc 152:119895
  • Hedlund J, Longo SB, York R (2020) Agriculture, pesticide use, and economic development: a global examination (1990–2014). Rural Sociol 85(2):519–544
  • Zhou XY, Wang X (2019) Cd contamination status and cost-benefits analysis in agriculture soils of Yangtze River basin. Environ Pollut 254:112962
  • Mahmood-ul-Hassan M, Yousra M, Ahmad R, Sarwar S (2019) Arsenic contamination in rice grown under anaerobic condition in arid agriculture: assessment and remediation. Bull Environ Contam Toxicol 103(6):865–870
  • Hussain Z, Alam M, Khan MA, Asif M, Shah MA, Khan S, Khan S, Nawab J (2020) Bioaccumulation of potentially toxic elements in spinach grown on contaminated soils amended with organic fertilisers and their subsequent human health risk. Arab J Geosci 13(18):1–9
  • Ning CHEN, Shuai W, Xinmei HAO, Zhang H, Dongmei ZHOU, Juan GAO (2017) Contamination of phthalate esters in vegetable agriculture and human cumulative risk assessment. Pedosphere 27(3):439–451
  • Niedobova J, Skalský M, Fric ZF, Hula V, Brtnický M (2019) Effects of so-called “environmentally friendly” agrochemicals on the harlequin ladybird Harmonia axyridis (Coleoptera: Coccinelidae). Eur J Entomol 116:173–177
  • Sharma K, Cheng Z, Grewal PS (2015) Relationship between soil heavy metal contamination and soil food web health in vacant lots slated for urban agriculture in two post-industrial cities. Urban Ecosyst 18(3):835–855
  • Alekseev I, Abakumov E (2020) 13C-NMR spectroscopy of humic substances isolated from the agricultural soils of Puchuncavi (El Melón and Puchuncavi areas), central Chile. Soil Water Res 15(3):191–198
  • Vega M, Nerenberg R, Vargas IT (2018) Perchlorate contamination in Chile: legacy, challenges, and potential solutions. Environ Res 164:316–326
  • Calderón R, Rajendiran K, Kim UJ, Palma P, Arancibia-Miranda N, Silva-Moreno E, Corradini F (2020) Sources and fates of perchlorate in soils in Chile: a case study of perchlorate dynamics in soil-crop systems using lettuce (Lactuca sativa) fields. Environ Pollut 264:114682
  • Reyes A, Thiombane M, Panico A, Daniele L, Lima A, Di Bonito M, De Vivo B (2020) Source patterns of potentially toxic elements (PTEs) and mining activity contamination level in soils of Taltal city (northern Chile). Environ Geochem Health 42(8):2573–2594
  • Reyes A, Cuevas J, Fuentes B, Fernández E, Arce W, Guerrero M, Letelier MV (2021) Distribution of potentially toxic elements in soils surrounding abandoned mining waste located in Taltal, Northern Chile. J Geochem Explor 220:106653
  • Verdejo J, Ginocchio R, Sauvé S, Salgado E, Neaman A (2015) Thresholds of copper phytotoxicity in field-collected agricultural soils exposed to copper mining activities in Chile. Ecotox Environ Safe 122:171–177
  • Moya H, Verdejo J, Yáñez C, Álvaro JE, Sauvé S, Neaman A (2017) Nitrification and nitrogen mineralization in agricultural soils contaminated by copper mining activities in Central Chile. J Soil Sci Plant Nutr 17(1):205–213
  • Stowhas T, Verdejo J, Yáñez C, Celis-Diez JL, Martínez CE, Neaman A (2018) Zinc alleviates copper toxicity to symbiotic nitrogen fixation in agricultural soil affected by copper mining in central Chile. Chemosphere 209:960–963
  • Pancetti F, Ramírez M, Castillo C (2011) Epidemiological studies of anticholinestarase pesticides poisoning in Chile. In: Satoh T, Gupta RC (eds) Anticholinesterase pesticides: metabolism, neurotoxicity, and epidemiology. Wiley, Hoboken, pp 357–364
  • Ramírez-Santana M, Zúñiga-Venegas L, Corral S, Roeleveld N, Groenewoud H, Van der Velden K, Scheepers PTJ, Pancetti F (2020) Association between cholinesterase’s inhibition and cognitive impairment: a basis for prevention policies of environmental pollution by organophosphate and carbamate pesticides in Chile. Environ Res 186:109539
  • Pancetti F, Olmos C, Dagnino-Subiabre A, Rozas C, Morales B (2007) Noncholinesterase effects induced by organophosphate pesticides and their relationship to cognitive processes: implication for the action of acylpeptide hydrolase. J Toxicol Environ Health B Crit Rev 10(8):623–630
  • Dike S, Apte S (2020) A bibliometric analysis of soil pollution due to microplastics. Libr Phil Pract:1–24
  • da Costa JP, Paço A, Santos PS, Duarte AC, Rocha-Santos T (2019) Microplastics in soils: assessment, analytics and risks. Environ Chem 16(1):18–30
  • Zhou B, Wang J, Zhang H, Shi H, Fei Y, Huang S, Tong Y, Wen D, Luo Y, Barceló D (2020) Microplastics in agricultural soils on the coastal plain of Hangzhou Bay, east China: multiple sources other than plastic mulching film. J Hazard Mater 388:121814
  • Zhang S, Wang J, Yan P, Hao X, Xu B, Wang W, Aurangzeib M (2020) Non-biodegradable microplastics in soils: a brief review and challenge. J Hazard Mater 409:124525
  • Corradini F, Meza P, Eguiluz R, Casado F, Huerta-Lwanga E, Geissen V (2019) Evidence of microplastic accumulation in agricultural soils from sewage sludge disposal. Sci Total Environ 671:411–420
  • Allen S, Allen D, Phoenix VR, Le Roux G, Jiménez PD, Simonneau A, Binet S, Galop D (2019) Atmospheric transport and deposition of microplastics in a remote mountain catchment. Nat Geosci 12(5):339–344
  • Zhu F, Zhu C, Wang C, Gu C (2019) Occurrence and ecological impacts of microplastics in soil systems: a review. Bull Environ Contam Toxicol 102(6):741–749
  • Klingelhöfer D, Braun M, Quarcoo D, Brüggmann D, Groneberg DA (2020) Research landscape of a global environmental challenge: microplastics. Water Res 170:115358
  • Pazienza P, De Lucia C (2020) For a new plastics economy in agriculture: policy reflections on the EU strategy from a local perspective. J Clean Prod 253:119844
  • Li J, Guo K, Cao Y, Wang S, Song Y, Zhang H (2021) Enhance in mobility of oxytetracycline in a sandy loamy soil caused by the presence of microplastics. Environ Pollut 269:116151
  • Zhang S, Wang J, Liu X, Qu F, Wang X, Wang X, Li Y, Sun Y (2019) Microplastics in the environment: a review of analytical methods, distribution, and biological effects. Trends Anal Chem 111:62–72
  • Ng EL, Lwanga EH, Eldridge SM, Johnston P, Hu HW, Geissen V, Chen D (2018) An overview of microplastic and nanoplastic pollution in agroecosystems. Sci Total Environ 627:1377–1388
  • Ariza-Tarazona MC, Villarreal-Chiu JF, Hernández-López JM, De la Rosa JR, Barbieri V, Siligardi C, Cedillo-González EI (2020) Microplastic pollution reduction by a carbon and nitrogen-doped TiO2: effect of pH and temperature in the photocatalytic degradation process. J Hazard Mater 395:122632
  • Napper IE, Thompson RC (2019) Environmental deterioration of biodegradable, oxo-biodegradable, compostable, and conventional plastic carrier bags in the sea, soil, and open-air over a 3-year period. Environ Sci Technol 53(9):4775–4783
  • Okpoho NA (2018) Smallholder agriculture land use impact on soil organic carbon stock in federal capital territory of Nigeria. J Agric Environ Inte Develop 112(1):109–119
  • Devátý J, Dostál T, Hösl R, Krása J, Strauss P (2019) Effects of historical land use and land pattern changes on soil erosion – case studies from Lower Austria and Central Bohemia. Land Use Policy 82:674–685
  • Ferreira V, Panagopoulos T, Cakula A, Andrade R, Arvela A (2015) Predicting soil erosion after land use changes for irrigating agriculture in a large reservoir of southern Portugal. Agric Agric Sci Proc 4:40–49
  • León-Muñoz J, Echeverría C, Marcé R, Riss W, Sherman B, Iriarte JL (2013) The combined impact of land use change and aquaculture on sediment and water quality in oligotrophic Lake Rupanco (North Patagonia, Chile, 40.8 S). J Environ Manage 128:283–291
  • Rosero DC (2015) Análisis de la dinámica del cambio de uso del suelo en la Provincia de Osorno, Región de los Lagos, Chile, periodo 1998-2013. Tesis de Magister, Universidad Austral de Chile, Valdivia, 46 p
  • Montoya-Tangarife C, De La Barrera F, Salazar A, Inostroza L (2017) Monitoring the effects of land cover change on the supply of ecosystem services in an urban region: a study of Santiago-Valparaíso, Chile. PLoS One 12(11):e0188117
  • Nahuelhual L, Carmona A, Lara A, Echeverría C, González ME (2012) Land-cover change to forest plantations: proximate causes and implications for the landscape in south-central Chile. Landscape Urban Plan 107(1):12–20
  • Rodríguez-Echeverry J, Echeverría C, Oyarzún C, Morales L (2018) Impact of land-use change on biodiversity and ecosystem services in the Chilean temperate forests. Landsc Ecol 33(3):439–453
  • Braun AC, Banfield CC, Vogt J, Barra R, Schuller P, Koch B (2014) Assessing erosion risks induced by land-use change in favor of commercial forestry in Chile. EARSeL eProceedings, special issue: 34th EARSeL symposium, Warsaw, pp 1–9
  • Díaz GI, Nahuelhual L, Echeverría C, Marín S (2011) Drivers of land abandonment in Southern Chile and implications for landscape planning. Landscape Urban Plan 99(3–4):207–217
  • Carevic FS, Barrientos E, Anderson M (2017) Bodefales en el norte de Chile: una visión general desde la perspectiva de los rasgos hidráulicos de la vegetación a la conservación biológica. Idesia (Arica) 35(3):109–114
  • Sharma H, Shukla MK, Bosland PW, Steiner R (2017) Soil moisture sensor calibration, actual evapotranspiration, and crop coefficients for drip irrigated greenhouse Chile peppers. Agr Water Manage 179:81–91
  • Alcívar M, Zurita-Silva A, Sandoval M, Muñoz C, Schoebitz M (2018) Reclamation of saline-sodic soils with combined amendments: impact on quinoa performance and biological soil quality. Sustainability 10(9):3083
  • Parraguez-Vergara E, Contreras B, Clavijo N, Villegas V, Paucar N, Ther F (2018) Does indigenous and campesino traditional agriculture have anything to contribute to food sovereignty in Latin America? Evidence from Chile, Peru, Ecuador, Colombia, Guatemala and Mexico. Int J Agr Systain 16(4–5):326–341
  • Fierro P, Valdovinos C, Lara C, Saldías GS (2021) Influence of intensive agriculture on benthic macroinvertebrate assemblages and water quality in the Aconcagua River Basin (Central Chile). Water 13(4):492