Genetically Encoded Biosensors to Monitor Intracellular Reactive Oxygen and Nitrogen Species and Glutathione Redox Potential in Skeletal Muscle Cells

  1. Escarlata Fernández-Puente 123
  2. Jesús Palomero 123
  1. 1 Universidad de Salamanca
    info

    Universidad de Salamanca

    Salamanca, España

    ROR https://ror.org/02f40zc51

  2. 2 Instituto de Neurociencias de Castilla y León
    info

    Instituto de Neurociencias de Castilla y León

    Salamanca, España

  3. 3 Instituto de Investigación Biomédica de Salamanca
    info

    Instituto de Investigación Biomédica de Salamanca

    Salamanca, España

    ROR https://ror.org/03em6xj44

Libro:
Prime Archives in Molecular Sciences
  1. Saeed Tarighi (coord.)

Editorial: Vide Leaf

ISBN: 978-93-92117-26-8

Año de publicación: 2022

Tipo: Capítulo de Libro

Resumen

Reactive oxygen and nitrogen species (RONS) play an important role in the pathophysiology of skeletal muscle and are involved in the regulation of intracellular signaling pathways, which drive metabolism, regeneration, and adaptation in skeletal muscle. However, the molecular mechanisms underlying these processes are unknown or partially uncovered. We implemented a combination of methodological approaches that are funded for the use of genetically encoded biosensors associated with quantitative fluorescence microscopy imaging to study redox biology in skeletal muscle. Therefore, it was possible to detect and monitor RONS and glutathione redox potential with high specificity and spatio-temporal resolution in two models, isolated skeletal muscle fibers and C2C12 myoblasts/myotubes. Biosensors HyPer3 and roGFP2-Orp1 were examined for the detection of cytosolic hydrogen peroxide; HyPer-mito and HyPer-nuc for the detection of mitochondrial and nuclear hydrogen peroxide; Mito-Grx1-roGFP2 and cyto-Grx1-roGFP2 were used for registration of the glutathione redox potential in mitochondria and cytosol. G-geNOp was proven to detect cytosolic nitric oxide. The fluorescence emitted by the biosensors is affected by pH, and this might have masked the results; therefore, environmental CO2 must be controlled to avoid pH fluctuations. In conclusion, genetically encoded biosensors and quantitative fluorescence microscopy provide a robust methodology to investigate the pathophysiological processes associated with the redox biology of skeletal muscle

Referencias bibliográficas

  • 1. Flück M, Hoppeler H. Molecular basis of skeletal muscle plasticity-from gene to form and function. In Reviews of Physiology, Biochemistry and Pharmacology. Berlin: Springer. 2003; 146: 159–216.
  • 2. Le Moal E, Pialoux V, Juban G, Groussard C, Zouhal H, Chazaud B, Mounier R. Redox Control of Skeletal Muscle Regeneration. Antioxid. Redox Signal. 2017; 27: 276–310.
  • 3. Sies H, Jones DP. Reactive oxygen species (ROS) as pleiotropic physiological signalling agents. Nat. Rev. Mol. Cell Biol. 2020; 21: 363–383.
  • 4. Powers SK, Jackson MJ. Exercise-Induced Oxidative Stress: Cellular Mechanisms and Impact on Muscle Force Production. Physiol. Rev. 2008; 88: 1243–1276.
  • 5. Palomero J, Jackson M. Redox regulation in skeletal muscle during contractile activity and aging 1. J. Anim. Sci. 2010; 88: 1307–1313.
  • 6. Szabó C, Ischiropoulos H, Radi R. Peroxynitrite: Biochemistry, pathophysiology and development of therapeutics. Nat. Rev. Drug Discov. 2007; 6: 662–680.
  • 7. Sakellariou GK, Vasilaki A, Palomero J, Kayani A, Zibrik L, McArdle A, Jackson M. Studies of Mitochondrial and Nonmitochondrial Sources Implicate Nicotinamide Adenine Dinucleotide Phosphate Oxidase(s) in the Increased Skeletal Muscle Superoxide Generation That Occurs During Contractile Activity. Antioxid. Redox Signal. 2013; 18: 603–621.
  • 8. Powers SK, Nelson WB, Hudson M. Exercise-induced oxidative stress in humans: Cause and consequences. FreeRadic. Biol.Med. 2011; 51: 942–950.
  • 9. Gomez-Cabrera, MC, Borrás C, Pallardó FV, Sastre J, Ji LL, Viña J. Decreasing xanthine oxidase-mediated oxidative stress prevents useful cellular adaptations to exercise in rats. J. Physiol. 2005; 567: 113–120.
  • 10. Jackson MJ. Control of Reactive Oxygen Species Production in Contracting Skeletal Muscle. Antioxid. Redox Signal. 2011; 15: 2477–2486.
  • 11. Sies H, Berndt C, Jones DP. Oxidative stress. Annu. Rev. Biochem. 2017; 86: 715–748.
  • 12. Trachootham D, Lu W, Ogasawara MA, Valle NRD, Huang P. Redox Regulation of Cell Survival. Antioxid. Redox Signal. 2008; 10: 1343–1374.
  • 13. Giorgio M, Trinei M, Migliaccio E, Pelicci PG. Hydrogen peroxide: A metabolic by-product or a common mediator of ageing signals? Nat. Rev. Mol. Cell Biol. 2007; 8: 722– 728.
  • 14. Pouvreau S. Genetically encoded reactive oxygen species (ROS) and redox indicators. Biotechnol. J. 2014; 9: 282– 293.
  • 15. Eroglu E, Gottschalk B, Charoensin S, Blass, S, Bischof H, Rost R, Madreiter-Sokolowski CT, Pelzmann B, Bernhart E, Sattler W, et al. Development of novel FP- based probes for live-cell imaging of nitric oxide dynamics. Nat. Commun. 2016; 7: 10623.
  • 16. Belousov VV, Fradkov AF, Lukyanov K, Staroverov D, Shakhbazov KS, Terskikh AV, Lukyanov S. Genetically encoded fluorescent indicator for intracellular hydrogen peroxide. Nat. Methods. 2006; 3: 281–286.
  • 17. Bilan D, Belousov VV. In Vivo Imaging of Hydrogen Peroxide with HyPer Probes. Antioxid. Redox Signal. 2018; 29: 569–584.
  • 18. Espinosa A, Campos C, Díaz-Vegas A, Galgani JE, Juretic N, Osorio-Fuentealba C, Bucarey JL, Tapia G, Valenzuela R, Contreras-Ferrat A, et al. Insulin-Dependent H2O2 Production Is Higher in Muscle Fibers of Mice Fed with a High-Fat Diet. Int. J. Mol. Sci. 2013; 14: 15740–15754.
  • 19. Díaz-Vegas A, Campos CA, Contreras-Ferrat A, Casas M, Buvinic S, Jaimovich E, Espinosa A. ROS Production via P2Y1-PKC-NOX2 Is Triggered by Extracellular ATP afterElectrical Stimulation of Skeletal Muscle Cells. PLoS ONE. 2015; 10: e0129882.
  • 20. Pearson T, Kabayo T, Ng R, Chamberlain J, McArdle A, Jackson MJ. Skeletal Muscle Contractions Induce Acute Changes in Cytosolic Superoxide, but Slower Responses in Mitochondrial Superoxide and Cellular Hydrogen Peroxide. PLoS ONE. 2014; 9: e96378.
  • 21. Fernández-Puente E, Sánchez-Martín MA, De Andrés J, Rodríguez-Izquierdo L, Méndez L, Palomero J. Expression and functional analysis of the hydrogen peroxide biosensors HyPer and HyPer2 in C2C12 myoblasts/myotubes and single skeletal muscle fibres. Sci. Rep. 2020; 10: 871.
  • 22. Bilan DS, Pase L, Joosen L, Gorokhovatsky AY, Ermakova YG, Gadella TWJ, Grabher C, Schultz C, Lukyanov S, Belousov VV. HyPer-3: A Genetically Encoded H2O2 Probe with Improved Performance for Ratiometric and Fluorescence Lifetime Imaging. ACS Chem. Biol. 2013; 8: 535–542.
  • 23. Quatresous E, Legrand C, Pouvreau S. Mitochondria- targeted cpYFP: pH or superoxide sensor? J. Gen. Physiol. 2012; 140: 567–570.
  • 24. Malinouski M, Zhou Y, Belousov VV, Hatfield LL, Gladyshev VN. Hydrogen Peroxide Probes Directed to Different Cellular Compartments. PLoS ONE. 2011; 6: e14564.
  • 25. Plecitá-Hlavatá L, Engstová H, Holendová B, Tauber J, Špaček T, Petrásková L, Křen V, Špačková J, Gotvaldová K, Ježek J, et al. Mitochondrial Superoxide Production Decreases on Glucose-Stimulated Insulin Secretion in Pancreatic β Cells Due to Decreasing Mitochondrial Matrix NADH/NAD + Ratio. Antioxid. Redox Signal. 2020; 33: 789–815.
  • 26. Matsushima S, Kuroda J, Ago T, Zhai P, Park JY, Xie L- H, Tian B, Sadoshima J. Increased Oxidative Stress in the Nucleus Caused by Nox4 Mediates Oxidation of HDAC4 and Cardiac Hypertrophy. Circ. Res. 2013; 112: 651–663.
  • 27. Gutscher M, Sobotta MC, Wabnitz GH, Ballikaya S, Meyer AJ, Samstag Y, Dick TP. Proximity-based Protein Thiol Oxidation by H2O2-scavenging Peroxidases. J. Biol.Chem. 2009; 284: 31532–31540.
  • 28. Morgan B, Sobotta MC, Dick TP. Measuring EGSH and H2O2 with roGFP2-based redox probes. Free Radic. Biol. Med. 2011; 51: 1943–1951.
  • 29. Müller A, Schneider JF, Degrossoli A, Lupilova N, Dick TP, Leichert L. Systematic in vitro assessment of responses of roGFP2-based probes to physiologically relevant oxidant species. Free Radic. Biol. Med. 2017; 106: 329–338.
  • 30. Deglasse JP, Roma LP, Pastor-Flores D, Gilon P, Dick TP, Jonas JC. Glucose Acutely Reduces Cytosolic and Mitochondrial H2O2 in Rat Pancreatic Beta Cells. Antioxid. Redox Signal. 2019; 30: 297–313.
  • 31. Pouvreau S. Beyond the Cuvette: Redox Indicators in Biological Experiments. Antioxid. Redox Signal. 2016; 25: 517–519.
  • 32. Lukyanov K, Belousov VV. Genetically encoded fluorescent redox sensors. Biochim. Biophys. Acta (BBA) Gen. Subj. 2014; 1840: 745–756.
  • 33. Sies H. Glutathione and its role in cellular functions. Free Radic. Biol. Med. 1999; 27: 916–921.
  • 34. Halliwell B. Reactive oxygen species in living systems: Source, biochemistry, and role in human disease. Am. J. Med. 1991; 91: S14–S22.
  • 35. Palomero J, Vasilaki A, Pye D, McArdle A, Jackson MJ. Aging increases the oxidation of dichlorohydrofluorescein in single isolated skeletal muscle fibers at rest, but not during contractions. Am. J. Physiol. Integr. Comp. Physiol. 2013; 305: R351–R358.
  • 36. Gutscher M, Pauleau AL, Marty L, Brach T, Wabnitz GH, Samstag Y, Meyer AJ, Dick TP. Real-time imaging of the intracellular glutathione redox potential. Nat. Methods. 2008; 5: 553–559.
  • 37. Nanadikar MS, Leon AMV, Borowik S, Hillemann A, Zieseniss A, Belousov VV, Bogeski I, Rehling P, Dudek J, Katschinski DM. O2 affects mitochondrial functionality ex vivo. Redox Biol. 2019; 22: 101152.
  • 38. Trautsch I, Heta E, Soong PL, Levent E, Nikolaev VO, Bogeski I, Katschinski DM, Mayr M, Zimmermann WH. Optogenetic Monitoring of the Glutathione RedoxState in Engineered Human Myocardium. Front. Physiol. 2019; 10: 272.
  • 39. Swain L, Kesemeyer A, Meyer-Roxlau S, Vettel C, Zieseniss A, Güntsch A, Jatho A, Becker A, Nanadikar MS, Morgan B, et al. Redox Imaging Using Cardiac Myocyte-Specific Transgenic Biosensor Mice. Circ. Res. 2016; 119: 1004–1016.
  • 40. Hearon CM, Jr, Dinenno FA. Regulation of skeletal muscle blood flow during exercise in ageing humans. J. Physiol. 2015; 8: 2261–2273.
  • 41. Kobayashi J, Uchida H, Kofuji A, Ito J, Shimizu M, Kim H, Sekiguchi Y, Kushibe, S. Molecular regulation of skeletal muscle mass and the contribution of nitric oxide: A review. FASEB BioAdv. 2019; 1: 364–374.
  • 42. Pye D, Palomero J, Kabayo T, Jackson MJ. Real-time measurement of nitric oxide in single mature mouse skeletal muscle fibres during contractions. J. Physiol. 2007; 581: 309–318.
  • 43. Palomero J, Pye D, Kabayo T, Jackson MJ. Effect of passive stretch on intracellular nitric oxide and superoxide activities in single skeletal muscle fibres: Influence of ageing. Free Radic. Res. 2011; 46: 30–40.
  • 44. Bryan NS, Grisham MB. Methods to detect nitric oxide and its metabolites in biological samples. Free Radic. Biol. Med. 2007; 43: 645–657.
  • 45. Eroglu E, Charoensin S, Bischof H, Ramadani-Muja J, Gottschalk B, Depaoli MR, Waldeck-Weiermair M, Graier W, Malli R. Genetic biosensors for imaging nitric oxide in single cells. Free Radic. Biol. Med. 2018; 128: 50–58.
  • 46. Palomero J, Pye D, Kabayo T, Spiller D, Jackson MJ. In Situ Detection and Measurement of Intracellular Reactive Oxygen Species in Single Isolated Mature Skeletal Muscle Fibers by Real Time Fluorescence Microscopy. Antioxid. Redox Signal. 2008; 10: 1463–1474.