A Decade of UAV Docking Stations: A Brief Overview of Mobile and Fixed Landing Platforms

  1. Grlj, Carlo Giorgio
  2. Krznar, Nino
  3. Pranjić, Marko
  4. González Aguilera, Diego 1
  1. 1 Universidad de Salamanca
    info

    Universidad de Salamanca

    Salamanca, España

    ROR https://ror.org/02f40zc51

Revista:
Drones

ISSN: 2504-446X

Año de publicación: 2022

Volumen: 6

Número: 1

Páginas: 17

Tipo: Artículo

DOI: 10.3390/DRONES6010017 GOOGLE SCHOLAR lock_openAcceso abierto editor

Otras publicaciones en: Drones

Resumen

Unmanned Aerial Vehicles have advanced rapidly in the last two decades with the advances in microelectromechanical systems (MEMS) technology. It is crucial, however, to design better power supply technologies. In the last decade, lithium polymer and lithium-ion batteries have mainly been used to power multirotor UAVs. Even though batteries have been improved and are constantly being improved, they provide fairly low energy density, which limits multirotors’ UAV flight endurance. This problem is addressed and is being partially solved by using docking stations which provide an aircraft to land safely, charge (or change) the batteries and to take-off as well as being safely stored. This paper focuses on the work carried out in the last decade. Different docking stations are presented with a focus on their movement abilities. Rapid advances in computer vision systems gave birth to precise landing systems. These algorithms are the main reason that docking stations became a viable solution. The authors concluded that the docking station solution to short ranges is a viable option, and numerous extensive studies have been carried out that offer different solutions, but only some types, mainly fixed stations with storage systems, have been implemented and are being used today. This can be seen from the commercially available list of docking stations at the end of this paper. Nevertheless, it is important to be aware of the technologies being developed and implemented, which can offer solutions to a vast number of different problems.

Información de financiación

Financiadores

Referencias bibliográficas

  • 10.1007/s10846-010-9496-6
  • 10.1007/s10846-010-9502-z
  • 10.1109/ICRA.2012.6224828
  • 10.1109/TRO.2011.2163435
  • 10.1007/s10846-013-9926-3
  • 10.3390/s20133648
  • 10.3390/app11188560
  • 10.1109/MIPR49039.2020.00049
  • 10.1109/ICRAE50850.2020.9310899
  • 10.3390/electronics8121532
  • 10.1155/2019/4723869
  • 10.3390/s18061703
  • 10.1109/VTCSpring.2017.8108676
  • 10.3390/s17091987
  • 10.1109/ICCA.2016.7505370
  • 10.3390/robotics9010008
  • 10.3390/robotics7040071
  • 10.3390/s21041151
  • 10.1007/s13369-018-3330-z
  • Benavidez, (2014), pp. 429
  • 10.1109/IROS.2013.6696776
  • 10.3390/s16091393
  • 10.1109/SAS51076.2021.9530091
  • 10.3390/s19245428
  • 10.3390/s19061380
  • 10.1007/s10846-016-0339-y
  • 10.1109/AIM.2011.6027085
  • 10.1109/ICUAS.2014.6842282
  • 10.1109/MRA.2018.2884744
  • 10.1002/rob.21898
  • 10.3390/app10238365
  • 10.1109/SIITME.2018.8599208
  • 10.3390/en10060803
  • 10.1109/EIConRus.2019.8656921
  • Fetisov, (2021), pp. 3
  • 10.1109/DCOSS49796.2020.00061
  • 10.1109/ICUAS48674.2020.9213907
  • An Autonomous Dock and Battery Swapping System for Multirotor UAV. Unpublhttps://www.Researchgate.Net/publication/325077351
  • 10.1109/ICUAS.2015.7152282
  • 10.1109/UIC-ATC.2013.103
  • 10.1109/IMCEC.2018.8469759
  • Lebedev, (2021), pp. 499
  • 10.1109/SAUPEC/RobMech/PRASA48453.2020.9041028
  • 10.1088/1742-6596/1650/2/022068
  • 10.1109/ACIRS.2016.7556212
  • 10.1109/CASE49439.2021.9551679
  • 10.1109/ICRA40945.2020.9197081
  • 10.3390/drones2020015
  • 10.3390/drones2040034
  • Precision Landing of a UAV on a Moving Platform for Outdoor Applicationshttps://www.researchgate.net/publication/351034961_Precision_Landing_of_a_UAV_on_a_Moving_Platform_for_Outdoor_Applications
  • 10.1109/SSRR.2017.8088164
  • 10.1109/SSRR.2013.6719338
  • 10.3390/rs10111829
  • 10.3390/s20195630
  • 10.1109/MED.2015.7158723
  • 10.1109/ICRA.2015.7139490
  • UAV Autonomous Landing on a Moving Platformhttps://web.stanford.edu/class/aa228/reports/2018/final24.pdf
  • 10.1109/ICCAD49821.2020.9260498
  • 10.1109/ICRA.2016.7487254
  • Castillo, (2019), pp. 342
  • 10.1109/LRA.2021.3101882
  • 10.1109/SSRR50563.2020.9292607
  • 10.1109/TIM.2020.3039649
  • 10.1002/rob.21858
  • 10.1109/CompComm.2017.8323042
  • 10.1109/SII.2017.8279205
  • 10.1109/NAECON46414.2019.9058225
  • 10.1109/ICRA.2018.8460201
  • 10.1007/s42835-019-00119-8
  • 10.3390/app9132661
  • 10.1109/IROS.2018.8594513
  • Wilson, (2015), Volume 3
  • Jain, (2020), arXiv
  • 10.1109/AERO50100.2021.9438229
  • 10.1109/ICRA40945.2020.9197580
  • 10.1109/ICECOCS50124.2020.9314415
  • 10.1109/TII.2019.2912024
  • 10.3390/s20123369
  • 10.3390/s19040886
  • 10.1109/ROBIO49542.2019.8961597
  • 10.3390/s20164411
  • 10.1109/ICRA.2015.7139272
  • Airobotics Solutionhttps://www.airoboticsdrones.com
  • https://www.nightingalesecurity.com/specs-faqs/
  • Percepto Basehttps://percepto.co/air-mobile/
  • Hextronics Global Drone Stationhttps://www.hextronics.tech/faqs
  • SKYPORT DP5 Drone Box Hangarhttps://www.skycharge.de/drone-box-hangar
  • Autonomous Drone Porthttps://hive.aero
  • Autonomous Drones-in-a-Boxhttps://dronehub.ai
  • Smart Aerial Monitoring Systems (SAMS)https://www.easyaerial.com/#