El cerebro estresado y su implicación en el comportamiento desadaptativo durante la pandemia por COVID-19

  1. Fernando Gordillo León 1
  1. 1 Universidad de Salamanca
    info

    Universidad de Salamanca

    Salamanca, España

    ROR https://ror.org/02f40zc51

Journal:
Análisis y modificación de conducta

ISSN: 0211-7339 2173-6855

Year of publication: 2023

Volume: 49

Issue: 180

Pages: 69-81

Type: Article

DOI: 10.33776/AMC.V49I180.7591 DIALNET GOOGLE SCHOLAR lock_openDialnet editor

More publications in: Análisis y modificación de conducta

Abstract

Abstract Human beings face stressful situations on a daily basis and must respond effectively to survive and adapt to the environment. However, the high intensity and persistence of the stressor, as happened during the COVID-19 pandemic, could have a negative effect on people’s neurology, cognition and behavior. Structures such as the amygdala and the prefrontal cortex are affected by acute and persistent stress, being the explanatory basis for the maladaptive attitudes and behaviors that occur in emergency situations. Processes such as the latency between stress and decision-making, cognitive reappraisal, and imitation, all dependent on the prefrontal cortex and the amygdala, explain the rapid spread of fake news, denialism, and compulsive purchases during COVID-19 pandemic. Based on the analysis of the information, some approach guidelines can be established, based on neurocognitive knowledge, with which to face emergency situations: 1) Monitor the level of population stress; 2) Manage the information transmitted (intensity / frequency); 3) Avoid informational contradictions (uncertainty); 4) Promote imitation models; 5) Establish support systems for vulnerable groups; 6) Facilitate controlled leisure.

Bibliographic References

  • Arnsten, A. F. T. (2018). Stress signalling pathways that impair prefrontal cortex structure and function. Nature Reviews Neuroscience, 10, 410-422.
  • Ayers, J. W., Leas, E. C., Johnson, D. C., Poliak ,A., Althouse, B. M., Dredze, M. y Nobles, A. (2020).Internet Searches for acute anxiety during the early stages of the COVID-19 Pandemic. JAMA International Medicine, 180 1706-1707.
  • Berghorst, L. H., Bogdan, R., Frank, M. J. y Pizzagalli, D. A. (2013). Acute stress selectively reduces reward sensitivity. Frontiers in Human Neuroscience, 7, 133.
  • Bilinski, A., y`Emanuel, E. J. (2020). COVID-19 and excess all-cause mortality in the US and 18 comparison countries. JAMA, 324(20), 2100-2102.
  • Blankenshipa, S. L., Botdorfa, M., Rigginsab, T. y Doughertya, L. R. (2019). Lasting effects of stress physiology on the brain: Cortisol reactivity during preschool predicts hippocampal functional connectivity at school age. Developmental Cognitive Neuroscience, 40, 100736.
  • Boyd, R. y Richerson, P. (1985). Culture and the evolutionary process. University of Chicago, Chicago.
  • Brass, M., Ruby, P. y Splenger, S. (2009). Inhibition of imitative behaviour and social cognition. Philosophical Transactions of the Royal Society B: Biological Sciences, 364, 2359-2367.
  • Brown, T. I., Gagnon, S.A. y Wagner, AD. (2020). Stress disrupts human hippocampalprefrontal function during prospective spatial navigation and hinders flexible behavior. Current Biology, 30, R439-R441.
  • Burrage, E., Marshall, K.L, Santanam, N. y Chantler, P.D. (2018). Cerebrovascular dysfunction with stress and depression. Brain Circulation, 4, 43-53.
  • Cerqueira, J.J., Mailliet, F., Almeida, O.F., Jay, T.M. y Sousa, N. (2007). The prefrontal cortex as a key target of the maladaptive response to stress. Journal of Neuroscience, 27, 2781–2787.
  • Coehoorn, C. J., Stuart-Hill, L. A., Abimbola, W., Neary, J.P. y Krigolson, O.E. (2020). Firefighter neural function and decisionmaking following rapid heat stress. Fire Safety Journal, 118, 103240.
  • Coltheart, M. (2010). The neuropsychology of delusions. Annals of the New York Academy of Sciences journal, 1191, 16-26.
  • Cornwall, W. (2020). Just 50% of Americans plan to get a COVID-19 vaccine: here’s how to win over the rest. Science. Posted June 30, 2020.
  • Dantzer, R. (2006). (2006). Cytokine, sickness behavior, and depression. Neurologic Clinics, 24, 441-460.
  • Datta, D. y Arnsten, A.F.T. (2019). Loss of prefrontal cortical higher cognition with uncontrollable stress: Molecular mechanisms, changes with age, and relevance to treatment. Brain Science, 9(5), 113.
  • De Kloet, E.R, Oitzl, M.S. y Joels, M. (1999). Stress and cognition: are corticosteroids good or bad guys? Trends in Neurosciences, 22, 422-426.
  • Duvarci, S. y Pare, D. (2014). Amygdala microcircuits controlling learned fear. Neuron, 82, 966-980.
  • Forbes, C.E. y Grafman, J. (2010). The Role of the human prefrontal cortex in social cognition and moral judgment. Annual Review of Neuroscience, 3, 299-324.
  • Forte, G., Favieri, F., Tambelli, R. y Casagrande, M. (2020). COVID-19 Pandemic in the Italian population: Validation of a PostTraumatic Stress Disorder Questionnaire and prevalence of PTSD symptomatology. International Journal of Environmental Research and Public Health, 17, 4151.
  • Galef, B.G. y Jr, Whiskin, E.E.(2004). Effects of environmental stability and demonstrator age on social learning of food preferences by young Norway rats. Animal Behaviour, 68, 897-902.
  • Garrison, J.R., Fernández-Egea, E., Zaman, R., Agius, M., Simons, J.S. (2017). Reality monitoring impairment in schizophrenia reflects specific prefrontal cortex dysfunction. NeuroImage: Clinical, 25, 260-268.
  • Goldfarb, E.V. (2020). Participant stress in the COVID-19 era and beyond. Neuroscience, 21, 663.
  • Golkar, A., Johansson, E., Kasahara, M., Osika, W., Perski, A. y Savic, I. (2014). The influence of work-related chronic stress on the regulation of emotion and on functional connectivity in the brain. PLOS One, 9, e104550.
  • González-Sanguino, C., Ausín, B., Castellanos, M.Á., Saiz, J., López-Gómez, A., Ugidos, C. y Muñoz, M. (2020). Mental health consequences during the initial stage of the 2020 Coronavirus pandemic (COVID-19) in Spain. Brain,Behavior, and Immunity, 87, 72-176.
  • Gordillo, F. y Mestas, L. (2021). El animal humano y su comportamiento en emergencias. Revista Digital Universitaria, 22.
  • Grüter, C. y Ratnieks, F. (12011). Honeybee foragers increase the use of waggle dance information when private information becomes unrewarding. Animal behaviour, 81, 949-954.
  • Hanson, J.L., Albert, D., Iselin, A.M.R., Carre, J.M., Dodge, K.A. y Hariri, A.R. (2016). Cumulative stress in childhood is associated with blunted reward-related brain activity in adulthood. Social Cognitive and Affective Neuroscience, 11, 405-412.
  • Harris, K. D. y Mrsic-Flogel, T. D. (2013). Cortical connectivity and sensory coding. Nature, 503, 51-58. Hölzel, B.K., Carmody, J., Evans, K.C., Hoge, E.A., Dusek, J.A., Morgan, L., Pitman, R.K. y Lazar, S.W. (2010). Stress reduction correlates with structural changes in the amygdala. Social Cognitive and Affective Neuroscience, 5(1), 11-7.
  • Johnson, F.K., Delpech, J.C., Thompson, G.J., Wei, L., Hao, J., Herman, P., Hyder, F. y Kaffman, A. (2018). Amygdala hyper-connectivity in a mouse model of unpredictable early life stress. Translational psychiatry, 8, 49.
  • Jovanovic, H., Perski, A., Berglund, H. y Savic, I. (2011).Chronic stress is linked to 5-HT(1A) receptor changes and functional disintegration of the limbic networks. NeuroImage, 55, 1178-1188.
  • Kataoka, H., Shima, Y., Nakajima, K. y Nakamura, K. (2020). A central master driver of psychosocial stress responses in the rat. Science, 367, 1105-1112.
  • Kudielka, B.M., Kirshbaum, C. (2004). Biological bases of the stress response. In Stress and Addiction: Biological and Psychological Mechanisms, ed. M. Al’Absi (Amsterdam: Elsevier): 3-19.
  • Kumar, P., Berghorst, L.H., Nickerson, L.D., Dutra, S.J, Goer, F.K., Greve, D.N. y Pizzagalli, D. A. (2014). Differential effects of acute stress on anticipatory and consummatory phases of reward processing. Neuroscience, 266, 1-12.
  • Kvetnansky, R., Sabban, E.L. y Palkovits, M. (2009). Catecholaminergic systems in stress: structural and molecular genetic approaches. Physiological Reviews, 89, 535-606.
  • LeDoux JE. (1996). The emotional brain. Simon and Schuster: New York
  • Lefebvre, L. y Palameta, B. (1988). Mechanisms, ecology, and population difusión of socially learned, food-finding behavior in feral pigeons. En T. R. Zentall y B. G. Galef, Jr. (Eds.), Social learning: Psychological and biological perspectives (p. 141–164).
  • Lawrence Erlbaum Associates, Inc. Lighthall, N., Sakaki, M., Vasunilashorn, S., Nga, L., Somayajula, S., Chen, E., Samii, N. y Mather, M. (2011). Gender differences in reward-related decisión processing under stress. Social Cognitive and Affective Neuroscience, 7, 476-84.
  • Liston, C., McEwen, B.S. y Casey, B. J. (2009). Psychosocial stress reversibly disrupts prefrontal processing and attentional control. PNAS, 106, 912-917.
  • Liu, C.H, Zhang, E., Wong, G.T.F., Hyun, S. y Hahm, H. (2020b). Hahm factors associated with depression, anxiety, and PTSD symptomatology during the COVID-19 pandemic: Clinical implications for U.S. young adult mental health. Psychiatry Research, 290, 113172.
  • Liu, N., Zhang, F., Wei, C., Jia, Y., Shang, Z., Sun, L., Wu, L., Sun, Z., Zhoy, Y., Wang, Y. y Liu, W. (2020a). Prevalence and predictors of PTSS during COVID-19 outbreak in China hardest-hit areas: gender differences matter. Psychiatry Research, 287, 112921.
  • Liu, W-Z., Zhang, W.H., Zheng, Z.H., Zou, J.X., Liu, X.X., Huang, S.H., You, W.J., He, Y., Zhang, J.Y., Wang, X.D. y Pan, B.X. (2020c). Identification of a prefrontal cortex-toamygdala pathway for chronic stressinduced anxiety. Nature Communications, 11, 2221.
  • Lupien, S.J., Juster, R.P., Raymond, C. y Marin, M.F. (2018). The effects of chronic stress on the human brain: from neurotoxicity, to vulnerability, to opportunity. Frontiers in Neuroendocrinology, 49, 91-105.
  • McKlveen, J. M., Myers, B. y Herman, J.P (2015). The Medial Prefrontal Cortex: Coordinator of autonomic, neuroendocrine and behavioural responses to stress. Journal of Neuroendocrinology, 27, 446-456.
  • Meltzoff, A., Decety, J. (2003). What imitation tells us about social cognition: a rapprochement between developmental psychology and cognitive neuroscience. Philosophical Transactions of the Royal Society B: Biological Sciences, 358, 491-500
  • Mendoza-Halliday, D. y Martinez-Trujillo, J.C. (2017). Neuronal population coding of perceived and memorized visual features in the lateral prefrontal cortex. Nature Communications, 8, 15471.
  • Miller, B. L. (2020). Science Denial and COVID Conspiracy theories potential neurological mechanisms and possible responses. JAMA, 324(22), 2255-2256.
  • Myers, B., McKlveen, J.M. y Herman, J.P. (2014). Glucocorticoid actions on synapses, circuits, and behavior: Implications for the energetics of stress. Frontiers in Neuroendocrinology, 35, 180-196.
  • Negrón-Oyarzo, I., Aboitiz, F. y Fuentealba, P. (2016). Impaired functional connectivity in the prefrontal cortex: a mechanism for chronic stress-induced neuropsychiatric disorders. Neural Plasticity, 7539065.
  • Odriozola-González, P, Planchuelo-Gómez, A. y Irurtia, M.J. (2020). Psychological symptoms of the outbreak of the COVID-19 confinement in Spain. Journal of Health Psychology, 27(4), 825-835.
  • Oken, B., Chamine, I. y Wakeland, W. (2015). A systems approach to stress, stressors and resilience in humans. Behavioural Brain Research, 282, 144-154.
  • Ortega, S. (2019). Activación emocional en sujetos humanos: procedimientos para la inducción experimental de estrés. Psicologia USP, 30, e180176.
  • Pessiglione, M. y Delgado, M.R. (2015). The good, the bad and the brain: Neural correlates of appetitive and aversive values underlying decision making. Current Opinion in Behavioral Sciences, 5, 78-84.
  • Pocelli, A.J. y Delgado, M.R. (2017). Stress and decision making: Effects on valuation, learning, and risk-taking. Current Opinion in Behavioral Sciences, 14, 33-39.
  • Porcelli, A.J., Lewis, A.H. y Delgado, M.R. (2012). Acute stress influences neural circuits of reward processing. Frontiers in Neuroscience, 6, 157.
  • Pruessner, M., Pruessner, J., Hellhammer, D., Piked, B. y Lupien, S. (2007). The associations among hippocampal volume, cortisol reactivity, and memory performance in healthy young men. Psychiatry Research: Neuroimaging, 155, 1-10.
  • Ritchie, K, Chan, D. y Watermeyer, T. (2020). The cognitive consequences of the COVID-19 epidemic: collateral damage? Brain Communications, 2, fcaa069.
  • Rodríguez-Rey, R., Garrido-Hernansaiz, H. y Collado, S. (2020). Psychological impact and associated factors during the initial stage of the coronavirus (COVID-19) pandemic among the general population in Spain. Frontiers in Psychology, 11, 1540.
  • Savic, I., Perski, A., Osika, W. (2018). MRI shows that exhaustion syndrome due to chronic occupational stress is associated with partially reversible cerebral changes. Cerebral Cortex, 28, 894-906.
  • Savic, I. (2015). Structural changes of the brain in relation to occupational stress. Cerebral Cortex, 25, 1554-1564.
  • Simons, J. S., Garrison, J.R. y Johnson, M.K. (2017). Brain mechanisms of reality monitoring. Trends in Cognitive Sciences, 21(6), 462-473.
  • Simpson, E., Murray, L., Paukner, A. y Ferrari, P.F. (2014). The mirror neuron system as revealed through neonatal imitation: presence from birth, predictive power and evidence of plasticity. Philosophical Transactions of the Royal Society B: Biological Sciences, 369, 20130289.
  • Skau, S., Jonsdottir, I.H., Dahlman, A.S., Johansson, B.J. y Kuhn, H.G. (2021). Exhaustion disorder and altered brain activity in frontal cortex detected with fNIRS. The International Journal on the Biology of Stress, 24, 64-75.
  • Soares, J. M., Sampaio, A., Ferreira, L. M., Santos, N. C., Marques, F., Palha, J. A., Cerqueira, J. J. y Sousa, N. (2012). Stress-induced changes in human decision-making are reversible. Translational Psychiatry, 2, e131.
  • Sousa, N., Lukoyanov, N.V., Madeira, M.D., Almeida, O.F. y Paula-Barbosa, M.M. (2000). Reorganization of the morphology of hippocampal neurites and synapses after stress-induced damage correlates with behavioral improvement. Neuroscience, 97, 253-266
  • Speisman, J. C., Lazarus, R.S., Mordkoff, A. y Davison, L. (1964). Experimental reduction of stress based on ego-defense theory. Journal of Psychopathology and Clinical Science, 68, 367-380.
  • Starcke, K. y Brand, M. (2012). Decision making under stress. Neuroscience & Biobehavioral Reviews, 36, 1228-1248.
  • Vidal-Gonzalez, I., Vidal-Gonzalez, B., Rauch, S.L. y Quirk, G.J. (2006). Microstimulation reveals opposing influences of prelimbic and infralimbic cortex on the expression of conditioned fear. Learning & Memory, 13, 728-733.
  • Webster, M.M. y Laland, K.N. (2008). Social learning strategies and predation risk: minnows copy only when using private information would be costly. Proceedings of the Royal Society B: Biological Sciences, 275, 2869-2876.
  • Wiblea, C.G., Andersona, J., Shentona, M.E., Kricuna, A., Hirayasua, Y., Tanakaa, S., Levitta, J.J., O’Donnella, B.F, Kikinise, R., Jolesze, F.A. y McCarleya, R.W. (2001). Psychiatry Research, 108, 65-78.
  • Yamakawa, K., Ohira, H., Matsunaga, M,. Isow, T. (2016). Prolonged effects of acute stress on decision-making under risk: A human psychophysiological study. Frontiers in Human Neuroscience, 10, 444.
  • Yerkes, R.M. y Dodson, J,D. (1908). The relation of strengh of stimulus to rapidity of habitformation. Journal of Comparative and Neurologic Psychology, 18, 459-489.
  • Zhang, X., Ge, T.T., Yin, G,. Cui, R., Zhao, G. y Yang, W. (2018). Stress-Induced functional alterations in amygdala: implications for neuropsychiatric diseases. Frontiers in Neuroscience, 12, 367