An Improved Spanning Tree-Based Algorithm for Coverage of Large Areas Using Multi-UAV Systems

  1. Chleboun, Jan
  2. Amorim, Thulio
  3. Nascimento, Ana Maria
  4. Nascimento, Tiago P.
  5. González Aguilera, Diego 1
  1. 1 Universidad de Salamanca
    info

    Universidad de Salamanca

    Salamanca, España

    ROR https://ror.org/02f40zc51

Revista:
Drones

ISSN: 2504-446X

Año de publicación: 2022

Volumen: 7

Número: 1

Páginas: 9

Tipo: Artículo

DOI: 10.3390/DRONES7010009 GOOGLE SCHOLAR lock_openAcceso abierto editor

Otras publicaciones en: Drones

Resumen

In this work, we propose an improved artificially weighted spanning tree coverage (IAWSTC) algorithm for distributed coverage path planning of multiple flying robots. The proposed approach is suitable for environment exploration in cluttered regions, where unexpected obstacles can appear. In addition, we present an online re-planner smoothing algorithm with unexpected detected obstacles. To validate our approach, we performed simulations and real robot experiments. The results showed that our proposed approach produces sub-regions with less redundancy than its previous version.

Referencias bibliográficas

  • Faigl, (2019), J. Field Robot., 36, pp. 270, 10.1002/rob.21823
  • Feng, K., Li, W., Ge, S., and Pan, F. (2020, January 22–24). Packages delivery based on marker detection for UAVs. Proceedings of the 2020 Chinese Control And Decision Conference (CCDC), Hefei, China.
  • Smrčka, D., Báča, T., Nascimento, T., and Saska, M. (2021, January 15–18). Admittance Force-Based UAV-Wall Stabilization and Press Exertion for Documentation and Inspection of Historical Buildings. Proceedings of the 2021 International Conference on Unmanned Aircraft Systems (ICUAS), Athens, Greece.
  • Baca, (2021), J. Intell. Robot. Syst., 102, pp. 26, 10.1007/s10846-021-01383-5
  • Kapoutsis, (2017), J. Intell. Robot. Syst., 86, pp. 663, 10.1007/s10846-016-0461-x
  • Dong, (2020), IEEE Trans. Autom. Sci. Eng., 17, pp. 1689, 10.1109/TASE.2020.2971324
  • Huang, (2020), IEEE Access, 8, pp. 198101, 10.1109/ACCESS.2020.3027422
  • Gabriely, Y., and Rimon, E. (2001, January 21–26). Spanning-tree based coverage of continuous areas by a mobile robot. Proceedings of the 2001 ICRA. IEEE International Conference on Robotics and Automation, Seoul, Republic of Korea.
  • Agmon, N., Hazon, N., and Kaminka, G. (2006, January 15–19). Constructing spanning trees for efficient multi-robot coverage. Proceedings of the 2006 IEEE International Conference on Robotics and Automation, Orlando, FL, USA.
  • Jiao, Y.S., Wang, X.M., Chen, H., and Li, Y. (2010, January 15–17). Research on the coverage path planning of UAVs for polygon areas. Proceedings of the 2010 5th IEEE Conference on Industrial Electronics and Applications, Taichung, Taiwan.
  • Kang, Z., Ling, H., Zhu, T., and Luo, H. (2019, January 3–5). Coverage Flight Path Planning for Multi-rotor UAV in Convex Polygon Area. Proceedings of the 2019 Chinese Control And Decision Conference (CCDC), Nanchang, China.
  • Ruan, (2018), China Commun., 15, pp. 194, 10.1109/CC.2018.8485481
  • Avellar, (2015), Sensors, 15, pp. 27783, 10.3390/s151127783
  • Kim, (2021), Expert Syst. Appl., 177, pp. 114919, 10.1016/j.eswa.2021.114919
  • Memon, (2021), Expert Syst. Appl., 183, pp. 115309, 10.1016/j.eswa.2021.115309
  • Li, (2022), Sci. Rep., 12, pp. 659, 10.1038/s41598-021-04506-y
  • Kurenkov, (2022), IEEE Robot. Autom. Lett., 7, pp. 10991, 10.1109/LRA.2022.3196886
  • Kim, (2022), IEEE Robot. Autom. Lett., 7, pp. 10406, 10.1109/LRA.2022.3192800
  • Ravankar, A., Ravankar, A., Kobayashi, Y., Hoshino, Y., and Peng, C.C. (2018). Path Smoothing Techniques in Robot Navigation: State-of-the-Art, Current and Future Challenges. Sensors, 18.
  • Huh, (2014), Int. J. Adv. Robot. Syst., 11, pp. 25, 10.5772/57340
  • Zhou, (2011), J. Inf. Comput. Sci., 8, pp. 2441
  • Li, (2022), Mech. Mach. Theory, 169, pp. 104606, 10.1016/j.mechmachtheory.2021.104606
  • Biagiotti, L., and Melchiorri, C. (2013, January 3–7). Online trajectory planning and filtering for robotic applications via B-spline smoothing filters. Proceedings of the 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems, Tokyo, Japan.
  • Hashemian, (2017), Adv. Robot., 31, pp. 1296, 10.1080/01691864.2017.1396923
  • Lin, Y., and Saripalli, S. (2014, January 27–30). Path planning using 3D Dubins Curve for Unmanned Aerial Vehicles. Proceedings of the 2014 International Conference on Unmanned Aircraft Systems (ICUAS), Orlando, FL, USA.
  • Brezak, (2011), IFAC Proc. Vol., 44, pp. 1133, 10.3182/20110828-6-IT-1002.02944
  • Ravankar, (2016), Int. J. Adv. Robot. Syst., 13, pp. 133, 10.5772/63458
  • Quigley, M., Conley, K., Gerkey, B., Faust, J., Foote, T., Leibs, J., Wheeler, R., and Ng, A.Y. (2009). ROS: An Open-Source Robot Operating System, ICRA Workshop on Open Source Software.