The Effects of Spatial Resolution and Resampling on the Classification Accuracy of Wetland Vegetation Species and Ground Objects: A Study Based on High Spatial Resolution UAV Images

  1. Chen, Jianjun 12
  2. Chen, Zizhen 1
  3. Huang, Renjie 1
  4. You, Haotian 12
  5. Han, Xiaowen 12
  6. Yue, Tao 12
  7. Zhou, Guoqing 12
  8. González Aguilera, Diego 3
  9. Broadbent, Eben
  1. 1 College of Geomatics and Geoinformation, Guilin University of Technology, Guilin 541004, China
  2. 2 Guangxi Key Laboratory of Spatial Information and Geomatics, Guilin University of Technology, Guilin 541004, China
  3. 3 Universidad de Salamanca
    info

    Universidad de Salamanca

    Salamanca, España

    ROR https://ror.org/02f40zc51

Revista:
Drones

ISSN: 2504-446X

Año de publicación: 2023

Volumen: 7

Número: 1

Páginas: 61

Tipo: Artículo

DOI: 10.3390/DRONES7010061 GOOGLE SCHOLAR lock_openAcceso abierto editor

Otras publicaciones en: Drones

Información de financiación

Financiadores

  • Guangxi Science and Technology Base and Talent Project
    • GuikeAD19245032
  • Major Special Projects of High Resolution Earth Observation System
    • 84-Y50G25-9001-22/23
  • National Natural Science Foundation of China
    • 41801030
    • 41861016
  • Guangxi Key Laboratory of Spatial Information and Geomatics
    • 19-050-11-22
  • Research Foundation of Guilin University of Technology
    • GUTQDJJ2017069

Referencias bibliográficas

  • Wang, (2012), Ambio, 41, pp. 782, 10.1007/s13280-012-0280-7
  • Yang, Y., Chen, J., Lan, Y., Zhou, G., You, H., Han, X., Wang, Y., and Shi, X. (2022). Landscape Pattern and Ecological Risk Assessment in Guangxi Based on Land Use Change. Int. J. Env. Res. Public Health, 19.
  • Davidson, (2014), Mar. Freshw. Res., 65, pp. 934, 10.1071/MF14173
  • Koch, (2012), IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., 5, pp. 1033, 10.1109/JSTARS.2012.2202091
  • Fu, (2022), Ecol. Indic., 140, pp. 108989, 10.1016/j.ecolind.2022.108989
  • Davidson, (2018), Mar. Freshw. Res., 69, pp. 620, 10.1071/MF17019
  • Dronova, (2015), Remote Sens., 7, pp. 6380, 10.3390/rs70506380
  • Adam, (2009), Wetl. Ecol. Manag., 18, pp. 281, 10.1007/s11273-009-9169-z
  • Guo, M., Li, J., Sheng, C., Xu, J., and Wu, L. (2017). A Review of Wetland Remote Sensing. Sensors, 17.
  • Tana, (2013), IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., 6, pp. 2391, 10.1109/JSTARS.2013.2249499
  • McCarthy, (2015), Int. J. Appl. Earth Obs. Geoinf., 40, pp. 11
  • Chen, Y., He, X., Xu, J., Zhang, R., and Lu, Y. (2020). Scattering Feature Set Optimization and Polarimetric SAR Classification Using Object-Oriented RF-SFS Algorithm in Coastal Wetlands. Remote Sens., 12.
  • Chen, Zhao, Zhang, Qin, and Yi (2019). Evaluation of the Accuracy of the Field Quadrat Survey of Alpine Grassland Fractional Vegetation Cover Based on the Satellite Remote Sensing Pixel Scale. ISPRS Int. J. Geo-Inf., 8.
  • Chen, (2016), Int. J. Remote Sens., 37, pp. 1922, 10.1080/01431161.2016.1165884
  • Chen, J., Huang, R., Yang, Y., Feng, Z., You, H., Han, X., Yi, S., Qin, Y., Wang, Z., and Zhou, G. (2022). Multi-Scale Validation and Uncertainty Analysis of GEOV3 and MuSyQ FVC Products: A Case Study of an Alpine Grassland Ecosystem. Remote Sens., 14.
  • Arif, (2016), Int. J. Remote Sens., 38, pp. 2639, 10.1080/01431161.2016.1249309
  • Rominger, K., and Meyer, S. (2019). Application of UAV-Based Methodology for Census of an Endangered Plant Species in a Fragile Habitat. Remote Sens., 11.
  • Sankey, (2021), Remote Sens. Environ., 253, pp. 112223, 10.1016/j.rse.2020.112223
  • Yan, (2019), ISPRS J. Photogramm. Remote Sens., 158, pp. 23, 10.1016/j.isprsjprs.2019.09.017
  • Roth, (2015), Remote Sens. Environ., 171, pp. 45, 10.1016/j.rse.2015.10.004
  • Meddens, (2011), Remote Sens. Environ., 115, pp. 1632, 10.1016/j.rse.2011.02.018
  • Hu, (2019), ISPRS J. Photogramm. Remote Sens., 154, pp. 1, 10.1016/j.isprsjprs.2019.05.008
  • Liu, M., Yu, T., Gu, X., Sun, Z., Yang, J., Zhang, Z., Mi, X., Cao, W., and Li, J. (2020). The Impact of Spatial Resolution on the Classification of Vegetation Types in Highly Fragmented Planting Areas Based on Unmanned Aerial Vehicle Hyperspectral Images. Remote Sens., 12.
  • Lu, (2017), GIScience Remote Sens., 55, pp. 205, 10.1080/15481603.2017.1408930
  • Narayanan, (2010), Int. J. Remote Sens., 23, pp. 537, 10.1080/01431160010025970
  • Fu, (2017), Ecol. Indic., 73, pp. 105, 10.1016/j.ecolind.2016.09.029
  • Mahdavi, (2017), Can. J. Remote Sens., 43, pp. 432, 10.1080/07038992.2017.1342206
  • De Luca, G., Silva, J.M.N., Cerasoli, S., Araújo, J., Campos, J., Di Fazio, S., and Modica, G. (2019). Object-Based Land Cover Classification of Cork Oak Woodlands using UAV Imagery and Orfeo ToolBox. Remote Sens., 11.
  • Duro, (2012), Remote Sens. Environ., 118, pp. 259, 10.1016/j.rse.2011.11.020
  • Liu, (2017), Eur. J. Remote Sens., 50, pp. 564, 10.1080/22797254.2017.1373602
  • Geng, (2021), Can. J. Remote Sens., 46, pp. 784, 10.1080/07038992.2021.1872374
  • Fu, (2021), Int. J. Appl. Earth Obs. Geoinf., 104, pp. 102553
  • (2022, July 01). Phantom 4 Pro/Pro_Plus Series User Manual CHS. Available online: https://dl.djicdn.com/downloads/phantom_4_pro/20211129/UM/Phantom_4_Pro_Pro_Plus_Series_User_Manual_CHS.pdf.
  • Cao, J., Leng, W., Liu, K., Liu, L., He, Z., and Zhu, Y. (2018). Object-Based Mangrove Species Classification Using Unmanned Aerial Vehicle Hyperspectral Images and Digital Surface Models. Remote Sens., 10.
  • Akar, (2016), Geocarto Int., 32, pp. 990, 10.1080/10106049.2016.1178816
  • Qian, (2014), Remote Sens., 7, pp. 153, 10.3390/rs70100153
  • Tiede, (2010), Int. J. Geogr. Inf. Sci., 24, pp. 859, 10.1080/13658810903174803
  • Michez, (2016), Env. Monit. Assess., 188, pp. 146, 10.1007/s10661-015-4996-2
  • Meyer, (2008), Comput. Electron. Agric., 63, pp. 282, 10.1016/j.compag.2008.03.009
  • Lu, (2017), ISPRS J. Photogramm. Remote Sens., 128, pp. 73, 10.1016/j.isprsjprs.2017.03.011
  • Lou, P., Fu, B., He, H., Li, Y., Tang, T., Lin, X., Fan, D., and Gao, E. (2020). An Optimized Object-Based Random Forest Algorithm for Marsh Vegetation Mapping Using High-Spatial-Resolution GF-1 and ZY-3 Data. Remote Sens., 12.
  • Nafarzadegan, (2021), Ecol. Indic., 125, pp. 107499, 10.1016/j.ecolind.2021.107499
  • Grabska, E., Hostert, P., Pflugmacher, D., and Ostapowicz, K. (2019). Forest Stand Species Mapping Using the Sentinel-2 Time Series. Remote Sens., 11.
  • Dobrinić, D., Gašparović, M., and Medak, D. (2021). Sentinel-1 and 2 Time-Series for Vegetation Mapping Using Random Forest Classification: A Case Study of Northern Croatia. Remote Sens., 13.
  • Pham, (2017), ISPRS J. Photogramm. Remote Sens., 128, pp. 86, 10.1016/j.isprsjprs.2017.03.013
  • Pasquarella, (2018), Remote Sens. Environ., 210, pp. 193, 10.1016/j.rse.2018.02.064
  • Sun, (2021), Remote Sens. Environ., 256, pp. 112320, 10.1016/j.rse.2021.112320
  • Adugna, T., Xu, W., and Fan, J. (2022). Comparison of Random Forest and Support Vector Machine Classifiers for Regional Land Cover Mapping Using Coarse Resolution FY-3C Images. Remote Sens., 14.
  • Belgiu, (2016), ISPRS J. Photogramm. Remote Sens., 114, pp. 24, 10.1016/j.isprsjprs.2016.01.011
  • Millard, (2015), Remote Sens., 7, pp. 8489, 10.3390/rs70708489
  • Mohammadimanesh, (2018), Int. J. Appl. Earth Obs. Geoinf., 73, pp. 450
  • Chabalala, Y., Adam, E., and Ali, K.A. (2022). Machine Learning Classification of Fused Sentinel-1 and Sentinel-2 Image Data towards Mapping Fruit Plantations in Highly Heterogenous Landscapes. Remote Sens., 14.
  • Martínez Prentice, R., Villoslada Peciña, M., Ward, R.D., Bergamo, T.F., Joyce, C.B., and Sepp, K. (2021). Machine Learning Classification and Accuracy Assessment from High-Resolution Images of Coastal Wetlands. Remote Sens., 13.
  • Thanh Noi, P., and Kappas, M. (2017). Comparison of Random Forest, k-Nearest Neighbor, and Support Vector Machine Classifiers for Land Cover Classification Using Sentinel-2 Imagery. Sensors, 18.
  • Zhou, R., Yang, C., Li, E., Cai, X., Yang, J., and Xia, Y. (2021). Object-Based Wetland Vegetation Classification Using Multi-Feature Selection of Unoccupied Aerial Vehicle RGB Imagery. Remote Sens., 13.
  • Michel, (2013), ISPRS J. Photogramm. Remote Sens., 85, pp. 102, 10.1016/j.isprsjprs.2013.08.007
  • Petropoulos, (2012), Comput. Geosci., 41, pp. 99, 10.1016/j.cageo.2011.08.019
  • Zhang, X., Xu, J., Chen, Y., Xu, K., and Wang, D. (2021). Coastal Wetland Classification with GF-3 Polarimetric SAR Imagery by Using Object-Oriented Random Forest Algorithm. Sensors, 21.
  • Tian, Y., Jia, M., Wang, Z., Mao, D., Du, B., and Wang, C. (2020). Monitoring Invasion Process of Spartina alterniflora by Seasonal Sentinel-2 Imagery and an Object-Based Random Forest Classification. Remote Sens., 12.
  • Ma, (2015), ISPRS J. Photogramm. Remote Sens., 102, pp. 14, 10.1016/j.isprsjprs.2014.12.026
  • Schaaf, (2013), GIScience Remote Sens., 48, pp. 324, 10.2747/1548-1603.48.3.324
  • Zhao, L., Shi, Y., Liu, B., Hovis, C., Duan, Y., and Shi, Z. (2019). Finer Classification of Crops by Fusing UAV Images and Sentinel-2A Data. Remote Sens., 11.
  • Cruz, (2013), Int. J. Remote Sens., 34, pp. 7113, 10.1080/01431161.2013.817712
  • Villoslada, (2020), Ecol. Indic., 111, pp. 105979, 10.1016/j.ecolind.2019.105979
  • Underwood, (2007), Env. Manag., 39, pp. 63, 10.1007/s00267-005-0228-9