A Systematic Literature Review (SLR) on Autonomous Path Planning of Unmanned Aerial Vehicles

  1. ul Husnain, Anees 13
  2. Mokhtar, Norrima 1
  3. Mohamed Shah, Noraisyah 1
  4. Dahari, Mahidzal 1
  5. Iwahashi, Masahiro 2
  6. González Aguilera, Diego 4
  1. 1 Department of Electrical Engineering, University of Malaya, Kuala Lumpur 50603, Malaysia
  2. 2 Information, Telecommunication and Control System Group, Nagaoka University of Technology, Niigata 940-2188, Japan
  3. 3 Department of Computer Systems Engineering, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
  4. 4 Universidad de Salamanca
    info

    Universidad de Salamanca

    Salamanca, España

    ROR https://ror.org/02f40zc51

Revista:
Drones

ISSN: 2504-446X

Año de publicación: 2023

Volumen: 7

Número: 2

Páginas: 118

Tipo: Artículo

DOI: 10.3390/DRONES7020118 GOOGLE SCHOLAR lock_openAcceso abierto editor

Otras publicaciones en: Drones

Resumen

UAVs have been contributing substantially to multi-disciplinary research and around 70% of the articles have been published in just about the last five years, with an exponential increase. Primarily, while exploring the literature from the scientific databases for various aspects within the autonomous UAV path planning, such as type and configuration of UAVs, the complexity of their environments or workspaces, choices of path generating algorithms, nature of solutions and efficacy of the generated paths, necessitates an increased number of search keywords as a prerequisite. However, the addition of more and more keywords might as well curtail some conducive and worthwhile search results in the same pursuit. This article presents a Systematic Literature Review (SLR) for 20 useful parameters, organized into six distinct categories that researchers and industry practitioners usually consider. In this work, Web of Science (WOS) was selected to search the primary studies based on three keywords: “Autonomous” + “Path Planning” + “UAV” and following the exclusion and inclusion criteria defined within the SLR methodology, 90 primary studies were considered. Through literature synthesis, a unique perspective to see through the literature is established in terms of characteristic research sectors for UAVs. Moreover, open research challenges from recent studies and state-of-the-art contributions to address them were highlighted. It was also discovered that the autonomy of UAVs and the extent of their mission complexities go hand-in-hand, and the benchmark to define a fully autonomous UAV is an arbitral goal yet to be achieved. To further this quest, the study cites two key models to measure a drone’s autonomy and offers a novel complexity matrix to measure the extent of a drone’s autonomy. Additionally, since preliminary-level researchers often look for technical means to assess their ideas, the technologies used in academic research are also tabulated with references.

Referencias bibliográficas

  • Borrego, (2014), J. Eng. Educ., 103, pp. 45, 10.1002/jee.20038
  • PRISMA (2021, October 15). Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA). Available online: https://www.prisma-statement.org/PRISMAStatement/.
  • Maw, A.A., Tyan, M., Nguyen, T.A., and Lee, J.W. (2021). iADA*-RL: Anytime Graph-Based Path Planning with Deep Reinforcement Learning for an Autonomous UAV. Appl. Sci., 11, (In English).
  • Wang, (2018), EURASIP J. Wirel. Commun. Netw., 2018, pp. 8, 10.1186/s13638-018-1260-9
  • Causa, F., Fasano, G., and Grassi, M. (2018). Multi-UAV Path Planning for Autonomous Missions in Mixed GNSS Coverage Scenarios. Sensors, 18, (In English).
  • Mardani, (2019), IEEE Access, 7, pp. 52609, 10.1109/ACCESS.2019.2911018
  • Faria, M., Marin, R., Popovic, M., Maza, I., and Viguria, A. (2019). Efficient Lazy Theta Path Planning over a Sparse Grid to Explore Large 3D Volumes with a Multirotor UAV. Sensors, 19, (In English).
  • de Santos, L.M.G., Nores, E.F., Sanchez, J.M., and Jorge, H.G. (2021). Indoor Path-Planning Algorithm for UAV-Based Contact Inspection. Sensors, 21, (In English).
  • Bayerlein, (2021), IEEE Open J. Commun. Soc., 2, pp. 1171, 10.1109/OJCOMS.2021.3081996
  • Jayaweera, (2020), IEEE Access, 8, pp. 192760, 10.1109/ACCESS.2020.3032929
  • Zhao, Y.H., Yan, L., Chen, Y., Dai, J.C., and Liu, Y.X. (2021). Robust and Efficient Trajectory Replanning Based on Guiding Path for Quadrotor Fast Autonomous Flight. Remote Sens., 13, (In English).
  • Kwak, (2018), IEEE Access, 6, pp. 37947, 10.1109/ACCESS.2018.2854712
  • Popovic, (2020), Auton. Robot., 44, pp. 889, 10.1007/s10514-020-09903-2
  • Wang, (2020), IET Intell. Transp. Syst., 14, pp. 1475, 10.1049/iet-its.2019.0688
  • Nielsen, L.D., Sung, I., and Nielsen, P. (2019). Convex Decomposition for a Coverage Path Planning for Autonomous Vehicles: Interior Extension of Edges. Sensors, 19, (In English).
  • Melo, A.G., Pinto, M.F., Marcato, A.L.M., Honorio, L.M., and Coelho, F.O. (2021). Dynamic Optimization and Heuristics Based Online Coverage Path Planning in 3D Environment for UAVs. Sensors, 21, (In English).
  • Oh, D., and Han, J. (2020). Fisheye-Based Smart Control System for Autonomous UAV Operation. Sensors, 20, (In English).
  • Huang, H.L., and Savkin, A.V. (2020). Autonomous Navigation of a Solar-Powered UAV for Secure Communication in Urban Environments with Eavesdropping Avoidance. Future Internet, 12, (In English).
  • Faria, M., Ferreira, A.S., Perez-Leon, H., Maza, I., and Viguria, A. (2019). Autonomous 3D Exploration of Large Structures Using an UAV Equipped with a 2D LIDAR. Sensors, 19, (In English).
  • Hayat, (2020), Auton. Robot., 44, pp. 1183, 10.1007/s10514-020-09926-9
  • Tullu, A., Endale, B., Wondosen, A., and Hwang, H.Y. (2021). Machine Learning Approach to Real-Time 3D Path Planning for Autonomous Navigation of Unmanned Aerial Vehicle. Appl. Sci., 11, (In English).
  • Koohifar, (2018), IEEE Access, 6, pp. 15884, 10.1109/ACCESS.2018.2810599
  • Schellenberg, B., Richardson, T., Richards, A., Clarke, R., and Watson, M. (2019). On-Board Real-Time Trajectory Planning for Fixed Wing Unmanned Aerial Vehicles in Extreme Environments. Sensors, 19, (In English).
  • Xie, (2021), IEEE Access, 9, pp. 24884, 10.1109/ACCESS.2021.3057485
  • Zhang, (2019), IEEE Access, 7, pp. 150775, 10.1109/ACCESS.2019.2946448
  • Wang, (2019), J. Intell. Robot. Syst., 93, pp. 33, 10.1007/s10846-018-0809-5
  • Tan, L.G., Wu, J.C., Yang, X.Y., and Song, S.M. (2019). Research on Optimal Landing Trajectory Planning Method between an UAV and a Moving Vessel. Appl. Sci., 9, (In English).
  • Razzaq, (2018), IEEE Access, 6, pp. 21536, 10.1109/ACCESS.2018.2824558
  • Liu, (2019), IEEE Access, 7, pp. 159048, 10.1109/ACCESS.2019.2950682
  • Hong, Y., Jung, S., Kim, S., and Cha, J. (2021). Autonomous Mission of Multi-UAV for Optimal Area Coverage. Sensors, 21, (In English).
  • Wu, (2019), IEEE Access, 7, pp. 117227, 10.1109/ACCESS.2019.2933002
  • Andrade, F.A.D., Hovenburg, A.R., de Lima, L.N., Rodin, C.D., Johansen, T.A., Storvold, R., Correia, C.A.M., and Haddad, D.B. (2019). Autonomous Unmanned Aerial Vehicles in Search and Rescue Missions Using Real-Time Cooperative Model Predictive Control. Sensors, 19, (In English).
  • Liu, (2018), IEEE Access, 6, pp. 33251, 10.1109/ACCESS.2018.2846769
  • Ling, (2021), Int. J. Aerosp. Eng., 2021, pp. 11, 10.1155/2021/9977262
  • Akagi, (2021), SN Appl. Sci., 3, pp. 23, 10.1007/s42452-021-04583-8
  • Charrier, (2020), Auton. Agents Multi-Agent Syst., 34, pp. 31, 10.1007/s10458-020-09468-5
  • Li, (2019), IEEE Access, 7, pp. 78665, 10.1109/ACCESS.2019.2922689
  • Kuhlman, M.J., Otte, M.W., Sofge, D., and Gupta, S.K. (2017). Multipass Target Search in Natural Environments. Sensors, 17, (In English).
  • Sanchez, P., Casado, R., and Bermudez, A. (2020). Real-Time Collision-Free Navigation of Multiple UAVs Based on Bounding Boxes. Electronics, 9, (In English).
  • Lee, (2020), IEEE Access, 8, pp. 226724, 10.1109/ACCESS.2020.3046284
  • Simon, (2018), Teh. Vjesn., 25, pp. 249
  • Papa, U., and Ponte, S. (2018). Preliminary Design of an Unmanned Aircraft System for Aircraft General Visual Inspection. Electronics, 7, (In English).
  • Allak, (2020), Astrobiology, 20, pp. 1321, 10.1089/ast.2019.2036
  • Bian, (2019), Int. J. Adv. Robot. Syst., 16, pp. 20, 10.1177/1729881418820227
  • Lazna, (2018), Int. J. Adv. Robot. Syst., 15, pp. 16, 10.1177/1729881417750787
  • Pinto, M.F., Honorio, L.M., Melo, A., and Marcato, A.L.M. (2020). A Robotic Cognitive Architecture for Slope and Dam Inspections. Sensors, 20, (In English).
  • Mazzia, (2021), Comput. Electron. Agric., 184, pp. 9, 10.1016/j.compag.2021.106091
  • Masone, (2018), Int. J. Robot. Res., 37, pp. 1395, 10.1177/0278364918802006
  • Loianno, (2017), IEEE Robot. Autom. Lett., 2, pp. 404, 10.1109/LRA.2016.2633290
  • Woods, (2019), IEEE Trans. Syst. Man Cybern. Syst., 49, pp. 665, 10.1109/TSMC.2017.2702701
  • Comba, (2020), Biosyst. Eng., 197, pp. 216, 10.1016/j.biosystemseng.2020.05.013
  • Airlangga, (2022), IEEE Access, 10, pp. 37572, 10.1109/ACCESS.2022.3164505
  • Cheng, (2022), IEEE Access, 10, pp. 45695, 10.1109/ACCESS.2022.3170583
  • Sun, Y.F., and Ma, O. (2022). Automating Aircraft Scanning for Inspection or 3D Model Creation with a UAV and Optimal Path Planning. Drones, 6, (In English).
  • Li, (2022), IEEE Access, 10, pp. 7664, 10.1109/ACCESS.2021.3139534
  • Alajami, A.A., Moreno, G., and Pous, R. (2022). Design of a UAV for Autonomous RFID-Based Dynamic Inventories Using Stigmergy for Mapless Indoor Environments. Drones, 6, (In English).
  • Shao, (2021), IEEE Access, 9, pp. 161161, 10.1109/ACCESS.2021.3132650
  • Vanegas, (2022), IEEE Access, 10, pp. 94262, 10.1109/ACCESS.2022.3203069
  • Alharbi, (2022), IEEE Access, 10, pp. 89598, 10.1109/ACCESS.2022.3201112
  • Lee, (2022), IEEE Access, 10, pp. 31586, 10.1109/ACCESS.2022.3160726
  • Miccinesi, L., Bigazzi, L., Consumi, T., Pieraccini, M., Beni, A., Boni, E., and Basso, M. (2022). Geo-Referenced Mapping through an Anti-Collision Radar Aboard an Unmanned Aerial System. Drones, 6, (In English).
  • Mathisen, (2020), Auton. Robot., 44, pp. 859, 10.1007/s10514-020-09902-3
  • Yu, (2019), IEEE Trans. Evol. Comput., 23, pp. 617, 10.1109/TEVC.2018.2878221
  • Chen, (2021), IEEE Access, 9, pp. 31493, 10.1109/ACCESS.2021.3055066
  • Nguyen, (2019), J. Field Robot., 36, pp. 617, 10.1002/rob.21857
  • Spurny, (2019), J. Field Robot., 36, pp. 125, 10.1002/rob.21816
  • He, (2017), Automatika, 58, pp. 195, 10.1080/00051144.2017.1388646
  • Iacono, (2018), Robot. Auton. Syst., 106, pp. 38, 10.1016/j.robot.2018.04.005
  • Zhou, (2021), IEEE Robot. Autom. Lett., 6, pp. 779, 10.1109/LRA.2021.3051563
  • Xu, (2021), IEEE Robot. Autom. Lett., 6, pp. 2729, 10.1109/LRA.2021.3062008
  • Beck, (2018), Robot. Auton. Syst., 100, pp. 251, 10.1016/j.robot.2017.09.014
  • Christie, (2017), J. Field Robot., 34, pp. 1450, 10.1002/rob.21723
  • (2017), Dyna, 92, pp. 412
  • Lo, L.Y., Yiu, C.H., Tang, Y., Yang, A.S., Li, B.Y., and Wen, C.Y. (2021). Dynamic Object Tracking on Autonomous UAV System for Surveillance Applications. Sensors, 21, (In English).
  • Elmokadem, T., and Savkin, A.V. (2021). A Hybrid Approach for Autonomous Collision-Free UAV Navigation in 3D Partially Unknown Dynamic Environments. Drones, 5, (In English).
  • Kurdel, P., Ceskovic, M., Gecejova, N., Adamcik, F., and Gamcova, M. (2022). Local Control of Unmanned Air Vehicles in the Mountain Area. Drones, 6, (In English).
  • Doukhi, (2022), IEEE Access, 10, pp. 82964, 10.1109/ACCESS.2022.3162702
  • Tordesillas, (2022), IEEE Access, 10, pp. 22662, 10.1109/ACCESS.2022.3154037
  • Shao, (2021), IEEE Access, 9, pp. 60668, 10.1109/ACCESS.2021.3073420
  • Lopez, B., Munoz, J., Quevedo, F., Monje, C.A., Garrido, S., and Moreno, L.E. (2021). Path Planning and Collision Risk Management Strategy for Multi-UAV Systems in 3D Environments. Sensors, 21, (In English).
  • Li, (2021), Def. Technol., 17, pp. 457, 10.1016/j.dt.2020.11.014
  • Feng, Y.R., Tse, K., Chen, S.Y., Wen, C.Y., and Li, B.Y. (2021). Learning-Based Autonomous UAV System for Electrical and Mechanical (E&M) Device Inspection. Sensors, 21, (In English).
  • Sandino, J., Vanegas, F., Maire, F., Caccetta, P., Sanderson, C., and Gonzalez, F. (2020). UAV Framework for Autonomous Onboard Navigation and People/Object Detection in Cluttered Indoor Environments. Remote Sens., 12, (In English).
  • Xu, (2020), J. Geogr. Sci., 30, pp. 1534, 10.1007/s11442-020-1798-4
  • Yang, (2019), IEEE-CAA J. Automatica Sin., 6, pp. 1230, 10.1109/JAS.2019.1911702
  • Guerra, (2020), IEEE Access, 8, pp. 116454, 10.1109/ACCESS.2020.3001393
  • Albert, (2017), Model. Identif. Control., 38, pp. 21, 10.4173/mic.2017.1.3
  • Challita, (2019), IEEE Trans. Wirel. Commun., 18, pp. 2125, 10.1109/TWC.2019.2900035
  • Guo, (2021), Chin. J. Aeronaut., 34, pp. 479, 10.1016/j.cja.2020.05.011
  • Marco Protti, R.B. (2007). Platform Innovations and System Integration for Unmanned Air, Land and Sea Vehicles (AVT-SCI Joint Symposium), NATO RTO.
  • Turek, D.M. (2021, October 15). Explainable Artificial Intelligence (XAI). Available online: https://www.darpa.mil/program/explainable-artificial-intelligence.
  • Alammar, J. (2021, January 1–6). Ecco: An Open Source Library for the Explainability of Transformer Language Models. Proceedings of the 11th International Joint Conference on Natural Language Processing: System Demonstrations: Association for Computational Linguistics, Online. Available online: https://aclanthology.org/2021.acl-demo.30.