Configurations and Applications of Multi-Agent Hybrid Drone/Unmanned Ground Vehicle for Underground Environments: A Review

  1. Dinelli, Chris 1
  2. Racette, John 1
  3. Escarcega, Mario 1
  4. Lotero, Simon 3
  5. Gordon, Jeffrey 3
  6. Montoya, James 1
  7. Dunaway, Chase 1
  8. Androulakis, Vasileios 3
  9. Khaniani, Hassan 4
  10. Shao, Sihua 2
  11. Roghanchi, Pedram 3
  12. Hassanalian, Mostafa 1
  13. González Aguilera, Diego 5
  1. 1 Department of Mechanical Engineering, New Mexico Tech, Socorro, NM 87801, USA
  2. 2 Department of Electrical Engineering, New Mexico Tech, Socorro, NM 87801, USA
  3. 3 Department of Mineral Engineering, New Mexico Tech, Socorro, NM 87801, USA
  4. 4 Petroleum Recovery Research Center, New Mexico Tech, Socorro, NM 87801, USA
  5. 5 Universidad de Salamanca
    info

    Universidad de Salamanca

    Salamanca, España

    ROR https://ror.org/02f40zc51

Revista:
Drones

ISSN: 2504-446X

Año de publicación: 2023

Volumen: 7

Número: 2

Páginas: 136

Tipo: Artículo

DOI: 10.3390/DRONES7020136 GOOGLE SCHOLAR lock_openAcceso abierto editor

Otras publicaciones en: Drones

Información de financiación

Financiadores

  • NIOSH-CDC
    • U60 OH012351

Referencias bibliográficas

  • Darvishpoor, (2021), Prog. Aerosp. Sci., 121, pp. 100694, 10.1016/j.paerosci.2020.100694
  • Hassanalian, (2018), Prog. Aerosp. Sci., 97, pp. 61, 10.1016/j.paerosci.2018.01.003
  • Hassanalian, (2017), Prog. Aerosp. Sci., 91, pp. 99, 10.1016/j.paerosci.2017.04.003
  • Shahmoradi, J., Talebi, E., Roghanchi, P., and Hassanalian, M. (2020). A Comprehensive Review of Applications of Drone Technology in the Mining Industry. Drones, 4.
  • Shahmoradi, (2022), Int. J. Theor. Appl. Multiscale Mech., 4, pp. 58, 10.1504/IJTAMM.2022.122895
  • Mirzaeinia, A., Shahmoradi, J., Roghanchi, P., and Hassanalian, M. (2019, January 19–22). Autonomous Routing and Power Management of Drones in GPS-Denied Environments through Dijkstra Algorithm. Proceedings of the 2019 AIAA Propulsion and Energy Conference, Indianapolis, Indiana.
  • Shahmoradi, J., Mirzaeinia, A., Hassanalian, M., and Roghanchi, P. (2020, January 6–10). Monitoring of Inaccessible Areas in GPS-Denied Underground Mines Using a Fully Autonomous Encased Safety Inspection Drone. Proceedings of the AIAA SciTech 2020, Orlando, FL, USA.
  • Lanctot, S., Cooke, J., Montoya, J., Herkenhoff, B., Mostafanejad, A., and Hassanalian, M. (2021, January 9–11). A Hybrid Vehicle System for Depositing Payloads in Extreme Environments Like Antarctica and Arctic. Proceedings of the AIAA Propulsion and Energy 2021 Forum, Virtual Event.
  • Louie, (2010), Axiomathes, 20, pp. 495, 10.1007/s10516-010-9117-9
  • Borges, (2022), Field Robot., 2, pp. 1567, 10.55417/fr.2022049
  • Lanctot, S., Herkenhoff, B., and Hassanalian, M. (2021, January 15–17). Unmanned Launching & Landing Rover (ULLR) for Moon and Martian Missions on Ice-Caps. Proceedings of the 2021 ASCEND Conference, Las Vegas, NV, USA.
  • John, (2011), Int. J. Sci. Eng. Res., 2, pp. 1
  • Ben-Ari, M., and Mondada, F. (2018). Elements of Robotics, Springer.
  • Ni, (2021), Inst. Mech. Eng. Part D J. Automob. Eng., 235, pp. 1084, 10.1177/0954407020912097
  • (2022, December 30). Clearpath Robotics: Mobile Robots for Research & Development. Available online: https://clearpathrobotics.com/.
  • Olmedo, (2020), J. Unmanned Veh. Syst., 8, pp. 364, 10.1139/juvs-2020-0003
  • Gonzalez-De-Santos, P., Fernández, R., Sepúlveda, D., Navas, E., and Armada, M. (2020). Agronomy-Climate Change and Food Security, Intech UK.
  • Blackburn, (2004), Unmanned Ground Vehicle Technology VI, Volume 5422, pp. 124, 10.1117/12.544715
  • Sun, (2017), Robot. Biomim., 4, pp. 1, 10.1186/s40638-017-0070-6
  • Guo, W., Qiu, J., Xu, X., and Wu, J. (2022). TALBOT: A Track-Leg Transformable Robot. Sensors, 22.
  • Herkenhoff, B., Lanctot, S., Bjorkman, T., Serda, N., and Hassanalian, M. (2021, January 9–11). Preliminary Design Concept of Locust Inspired Jumping Moon Robot Swarm. Proceedings of the AIAA Propulsion and Energy 2021 Forum, Virtual Event.
  • Western, A., Cervantes, R., Dunning, C., Haghshenas Jaryani, M., and Hassanalian, M. (2021, January 2–6). Bioinspired Robot with Walking, Rolling, and Jumping Capabilities for Planetary Exploration. Proceedings of the AIAA Aviation 2021 Forum, Virtual Event.
  • Herkenhoff, B.K., Lanctot, S.I., Fisher, J.M., Serda, N., Bjorkman, T.S., Martinez, V., Johnsonand, T., Davis, C., Yazzie, T., and Vadiee, N. (2021, January 15–19). Preliminary Design Concept of Locust Inspired Jumping Moon Robot Swarm. Proceedings of the Lunar and Planetary Science Conference, Online.
  • Western, (2022), Acta Astronaut., 204, pp. 34, 10.1016/j.actaastro.2022.12.030
  • Rezazadeh, (2018), IEEE Access, 6, pp. 54369, 10.1109/ACCESS.2018.2870291
  • Prada, E., Miková, Ľ., Surovec, R., and Kenderová, M. (2012, January 11–14). Complex kinematic model of snake-like robot with holonomic constraints. Proceedings of the Mezinárodní Vědecká Konference k Problematice Technologických a Inovačních Procesů Technnológia Europea, Hradec Králové, Czech Republic.
  • Crespi, (2005), Robot. Auton. Syst., 50, pp. 163, 10.1016/j.robot.2004.09.015
  • (2022, December 30). CDC—Mining Contract—Snake Robot for Mine Rescue—NIOSH, Available online: https://www.cdc.gov/niosh/mining/researchprogram/contracts/contract200–2009-30721.html.
  • Menciassi, A., Gorini, S., Pernorio, G., Weiting, L., Valvo, F., and Dario, P. (2004, January 22–26). Design, fabrication and performances of a biomimetic robotic earthworm. Proceedings of the 2004 IEEE International Conference on Robotics and Biomimetics, Shenyang, China.
  • Carlo, (2006), J. Bionic Eng., 3, pp. 115, 10.1016/S1672-6529(06)60015-2
  • Saunders, A., Goldman, D.I., Full, R.J., and Buehler, M. (2006, January 17–20). The rise climbing robot: Body and leg design. Proceedings of the Unmanned Systems Technology VIII, Kissimmee, FL, USA.
  • Uckert, (2020), Astrobiology, 20, pp. 1427, 10.1089/ast.2019.2177
  • (2022, December 30). The First Climbing Robot for Mars–Sciworthy. Available online: https://sciworthy.com/the-first-climbing-robot-for-mars/.
  • Lanctot, S., Montoya, J., Dunaway, C., Flores, C.E., Barstow, J., Janney, W., Eisenberg, S., Good, F., Davis, N.S., and Zhang, S. (2023, January 23–27). Pillbug-Inspired Robot with Crawling and Rolling Locomotion Mechanisms for Use on the Lunar Surface. Proceedings of the AIAA SciTech 2023 Forum, National Harbor, MD, USA & Online.
  • Liu, (2014), J. Bionic Eng., 11, pp. 541, 10.1016/S1672-6529(14)60066-4
  • Yu, (2011), IEEE/ASME Trans. Mechatron., 17, pp. 847, 10.1109/TMECH.2011.2132732
  • Han, S. (2022, December 01). A Guide to the Different Types of Drones & UAS. Everglades University. Available online: https://www.evergladesuniversity.edu/blog/guide-different-types-drones-unmanned-aerial-systems/.
  • Carholt, O.C., Fresk, E., Andrikopoulos, G., and Nikolakopoulos, G. (2016, January 21–24). Design, modelling and control of a single rotor UAV. Proceedings of the 2016 24th Mediterranean Conference on Control and Automation (MED), Athens, Greece.
  • Darvishpoor, (2020), Aerosp. Sci. Technol., 107, pp. 106238, 10.1016/j.ast.2020.106238
  • Mirkov, N., and Rasuo, B. (2012, January 23–28). Maneuverability of an UAV with coanda effect based lift production. Proceedings of the 28th International Council of the Aeronautical Sciences (ICAS), Brisbane, Australia.
  • Barlow, C., Lewis, D., Prior, S.D., Odedra, S., Erbil, M.A., Karamanoglu, M., and Collins, R. (2009, January 17–19). Investigating the use of the Coanda Effect to create novel unmanned aerial vehicles. Microsoft Word–MES_2009_Paper_coanda effect C Barlow D Lewis (soton.ac.uk). Proceedings of the International Conference on Manufacturing and Engineering Systems, Huwei, Taiwan.
  • Lavars, N. (2019, December 20). Bizarre ‘Bicopter’ Drone Uses Two Tilting Rotors for 50-Minute Flights. Available online: https://newatlas.com/drones/v-coptr-falcon-drone-tilting-50/.
  • Jin, H. (2022, April 27). Tricopter vs. Quadcopter 2022: Which Is Better for You. Available online: https://lucidcam.com/tricopter-vs-quadcopter/.
  • Yoo, D.W., Oh, H.D., Won, D.Y., and Tahk, M.J. (2010, January 8). Dynamic modeling and control system design for Tri-Rotor UAV. Proceedings of the 2010 3rd International Symposium on Systems and Control in Aeronautics and Astronautics, Harbin, China.
  • Lukow, S., Sherman, M., Gammill, M., and Hassanalian, M. (19–21, January 11–15). Design and Fabrication of Electromagnetic Attachment Mechanism for a Hybrid Drone for Mars Exploration. Proceedings of the 2021 AIAA SciTech Forum, Virtual Event.
  • Pilot Institute (2022, December 30). Is a Drone with More Rotors Better?. Available online: https://pilotinstitute.com/more-rotors-better/.
  • Lenski, P. (2017). Design, Construction and Operation of a Pentacopter. [Master’s Thesis, Luleå University of Technology, Department of Computer Science, Electrical and Space Engineering].
  • Foxtech (2022, December 30). Blog–Foxtech Screamer Racing Pentacopter-Preorder. Available online: https://www.foxtechfpv.com/blog/0530-news/.
  • (2022, December 30). Guitarbob. Dragonfly/Pentacopter Project. Available online: https://www.instructables.com/DragonflyPentacopter-Project/.
  • (2022, December 30). RedDrone. The Red Drone. (Pentacopter Version.right-Top View). Available online: https://www.123rf.com/photo_37276849_the-red-dronepentacopter-versionrighttop-view.html.
  • (2022, December 30). Night Hawk, Sky Rider. King Soopers—Sky Rider Night Hawk Hexacopter Drone with Wi-Fi Camera—Blue/Black, 1 CT. Available online: https://www.kingsoopers.com/p/skyrider-night-hawk-hexacopter-drone-with-wi-fi-camera-blue-black/0004732355700.
  • (2022, December 30). Octocopter. Spreading Wings S1000—DJI. DJI Official. Available online: https://www.dji.com/spreading-wings-s1000.
  • Throneberry, (2021), Meccanica, 56, pp. 1, 10.1007/s11012-021-01373-9
  • Hassanalian, M., and Abdelkefi, A. (2019). Towards Improved Hybrid Actuation Mechanisms for Flapping Wing Micro Air Vehicles: Analytical and Experimental Investigations. Drones, 3.
  • Throneberry, G., Hassanalian, M., and Abdelkefi, A. (2019). Insights into Sensitivity of Wing Shape and Kinematic Parameters Relative to Aerodynamic Performance of Flapping Wing Nano Air Vehicles. Drones, 3.
  • Ghommem, (2019), Inst. Mech. Eng. Part G. J. Aerosp. Eng., 233, pp. 0954410019852570
  • Hassanalian, (2017), Meccanica, 52, pp. 2047, 10.1007/s11012-016-0568-y
  • Hassanalian, (2017), Acta Mech., 228, pp. 1097, 10.1007/s00707-016-1757-4
  • Khan, M.M., Gee, P., Upshaw, J., and Hassanalian, M. (2023, January 23–27). Taxidermy Birds as Platform for Flapping Wing Drones: A Bioinspired Mechanism for Wildlife Monitoring. Proceedings of the AIAA SciTech 2023 Forum, National Harbor, MD, USA & Online.
  • Martinez-Ponce, J., Urban, C., Armanini, S.F., Agarwal, R.K., and Hassanalian, M. (2022, January 3–7). Aerodynamic Analysis of V-Shaped Flight Formation of Flapping-Wing Drones: Analytical and Experimental Studies. Proceedings of the AIAA SCITECH 2022 Forum, San Diego, CA, USA & Online.
  • Gammill, M., and Hassanalian, M. (2021, January 15–17). Aerodynamic Analysis of Manta Ray Inspired Fixed and Flapping-Wing Drones for High Altitude Venus Exploration. Proceedings of the 2021 ASCEND Conference, Las Vegas, NV, USA.
  • Zint, N., Silva, H., and Hassanalian, M. (19–21, January 11–15). Design and Prototyping a Butterfly-Inspired Flapping-Wing MAV: Novel Applications of Drones for Met Gala Fashion Event. Proceedings of the 2021 AIAA SciTech Forum, Virtual Event.
  • Maestas, S., Martinez-Ponce, J., Edwards, N., and Hassanalian, M. (2020, January 15–19). Applying Least Square Curve Fitting for Extraction the Birds’ Wing Shapes: Flapping Wing MAVs and Kinematic Optimization. Proceedings of the 2020 AIAA Aviation Forum, Virtual.
  • Erb, J., Strauss, E., Naghdi, M., and Hassanalian, M. (2022, January 3–7). Exploration of Venus’ Upper Atmosphere Using an Aqua and Bacteria Inspired Aerial System. Proceedings of the AIAA SCITECH 2022 Forum, San Diego, CA, USA & Online.
  • Kawano, H. (2011, January 4). Study of path planning method for under-actuated blimp-type UAV in stochastic wind disturbance via augmented-mdp. Proceedings of the 2011 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), Budapest, Hungary.
  • Shrestha, E., Hrishikeshavan, V., Benedict, M., Yeo, D., and Chopra, I. (2014, January 20). Development of control strategies and flight testing of a twin-cyclocopter in forward flight. Proceedings of the 70th annual national forum of the American Helicopter Society, Montreal, QC, Canada.
  • (2022, December 30). Tank Quadcopter Drone|Uncrate. Available online: https://uncrate.com/tank-quadcopter-drone/.
  • (2022, December 30). Miniature Hybrid UAS/UGV Introduced|Unmanned Systems Technology. Available online: https://www.unmannedsystemstechnology.com/2020/01/miniature-hybrid-uas-ugv-introduced/.
  • (2022, December 30). Shapeshifting Pegasus Drone Both Drives and Flies, Now Has Smart Radio (forbes.com). Available online: https://www.forbes.com/sites/sebastienroblin/2021/01/27/shapeshifting-pegasus-drone-both-drives-and-flies-now-has-smart-radio/?sh=6a295650795e.
  • (2022, December 30). Available online: https://dronehub.ai/we-are-proud-to-present-the-huuver-our-new-hybrid-drone-that-flies-and-rides/.
  • Kim, (2021), Sci. Robot., 6, pp. eabf8136, 10.1126/scirobotics.abf8136
  • Goldman, J. (2022, December 30). Parrot MiniDrone Rolling Spider Review: Inexpensive Drone Fun for Novice Flyers. Available online: https://www.cnet.com/reviews/parrot-minidrone-rolling-spider-review/.
  • (2022, December 30). Mining & Technology: Drones to Map Underground Areas, Save Time & Improve Safety (mozambiqueminingpost.com). Available online: https://mozambiqueminingpost.com/2018/04/30/mining-technology-drones-to-map-underground-areas-save-time-improve-safety/.
  • Ahmed, (2018), Phys. Can., 74, pp. 103
  • Biggs, T. (2022, December 30). Disney Research Creates Drone Car That Can Climb Walls. Available online: https://www.smh.com.au/technology/disney-research-creates-drone-car-that-can-climb-walls-20151231-glx6dd.html.
  • (2022, December 30). Panther. Advanced Tactics Panther Drone Has Completed First Aerial Package Delivery Test. Available online: https://uasweekly.com/2017/03/31/advanced-tactics-panther-drone-completed-first-aerial-package-delivery-test-safe-drive-doorstep-capability/.
  • Moscaritolo, A. (2022, December 30). Airblock Drone Can Turn into a Hovercraft. Available online: https://www.pcmag.com/news/airblock-drone-can-turn-into-a-hovercraft.
  • Zhao, (2018), IEEE Robot. Autom. Lett., 3, pp. 1176, 10.1109/LRA.2018.2793344
  • (2022, December 30). Drone Can Transform into a Tiny Car to Slide under Small Gaps|New Scientist. Available online: https://www.newscientist.com/article/2204184-drone-can-transform-into-a-tiny-car-to-slide-under-small-gaps/.
  • Falanga, (2018), IEEE Robot. Autom. Lett., 4, pp. 209, 10.1109/LRA.2018.2885575
  • Miki, T., Khrapchenkov, P., and Hori, K. (2019, January 20–24). UAV/UGV autonomous cooperation: UAV assists UGV to climb a cliff by attaching a tether. Proceedings of the 2019 International Conference on Robotics and Automation (ICRA), Montreal, QC, Canada.
  • (2022, December 30). Autonomous Drone-Launching Security UGV Under Development|Unmanned Systems Technology. Available online: https://www.unmannedsystemstechnology.com/2020/11/autonomous-drone-launching-security-ugv-under-development/.
  • (2022, December 30). Russia’s Autonomous Robot Tank Passes New Milestone (And Launches Drone Swarm). Available online: https://www.forbes.com/sites/davidhambling/2021/09/02/russias-autonomous-robot-tank-passes-new-milestone-and-launches-drone-swarm/?sh=2d9ae0ba21fa.
  • (2022, December 30). Spot Robot Dog Expands with Arm Attachment, Teams Up With Drone, and More!—Construction Junkie. Available online: https://www.constructionjunkie.com/blog/2020/12/15/spot-robot-dog-expands-with-arm-attachment-teams-up-with-drone-and-more.
  • (2022, December 30). Researchers Create Drone that Can Land on Moving Vehicle—Autoevolution. Available online: https://www.autoevolution.com/news/researchers-create-drone-that-can-land-on-moving-vehicle-video-85516.html.
  • Cocchioni, F., Pierfelice, V., Benini, A., Mancini, A., Frontoni, E., Zingaretti, P., Ippoliti, G., and Longhi, S. (2014, January 27–30). Unmanned ground and aerial vehicles in extended range indoor and outdoor missions. Proceedings of the 2014 International conference on unmanned aircraft systems (ICUAS), Orlando, FL, USA.
  • Saska, M., Krajnik, T., and Pfeucil, L. (2012, January 20–23). Cooperative μUAV-UGV autonomous indoor surveillance. Proceedings of the International Multi-Conference on Systems, Signals & Devices, Chemnitz, Germany.
  • Palafox, P.R., Garzón, M., Valente, J., Roldán, J.J., and Barrientos, A. (2019). Robust visual-aided autonomous takeoff, tracking, and landing of a small UAV on a moving landing platform for life-long operation. Appl. Sci., 9.
  • Hood, S., Benson, K., Hamod, P., Madison, D., OKane, J.M., and Rekleitis, I. (2017, January 13–16). Bird’s eye view: Cooperative exploration by UGV and UAV. Proceedings of the 2017 International Conference on Unmanned Aircraft Systems (ICUAS), Miami, FL, USA.
  • Cantieri, A., Ferraz, M., Szekir, G., Antônio Teixeira, M., Lima, J., Schneider Oliveira, A., and Aurélio Wehrmeister, M. (2020). Cooperative UAV–UGV autonomous power pylon inspection: An investigation of cooperative outdoor vehicle positioning architecture. Sensors, 20.
  • Asadi, (2020), Autom. Constr., 112, pp. 103068, 10.1016/j.autcon.2019.103068
  • (2022, December 30). TUAS—Tethered Unmanned Aerial System—DPI UAV Systems (dragonflypictures.com). Available online: https://www.dragonflypictures.com/products/tuav/.
  • Papachristos, C., and Tzes, A. (2014, January 16–19). The power-tethered UAV-UGV team: A collaborative strategy for navigation in partially-mapped environments. Proceedings of the 22nd Mediterranean Conference on Control and Automation, Palermo, Italy.
  • Nguyen, T., and Garone, E. (2016, January 6–8). Control of a UAV and a UGV cooperating to manipulate an object. Proceedings of the 2016 American Control Conference (ACC), Boston, MA, USA.
  • Xiao, X., Dufek, J., and Murphy, R.R. (2020). Tethered aerial visual assistance. arXiv.
  • Viegas, (2022), J. Intell. Robot. Syst., 104, pp. 1, 10.1007/s10846-021-01532-w
  • Martinez-Rozas, S., Alejo, D., Caballero, F., and Merino, L. (2022). Path and trajectory planning of a tethered UAV-UGV marsupial robotics system. arXiv.
  • Papachristos, C., Zikou, L., and Tzes, A. (2015, January 10–15). Deployment of a VSTOL-UAV for perception purposes in search and rescue operations. Proceedings of the SafeChania 2015: The Knowledge Triangle in the Civil Protection Service (Education, Research, Innovation), Chania, Greece.
  • Mullens, K., Burmeister, A., Wills, M., Nelson, T., and Denewiler, T. (2006, January 17–20). Development of a ugv-mounted automated refueling system for VTOL UAVS. Proceedings of the Unmanned Systems Technology VIII, Kissimmee, FL, USA.
  • Borgese, (2022), IEEE Robot. Autom. Lett., 7, pp. 8162, 10.1109/LRA.2022.3187504
  • Quaglia, G., Visconte, C., Scimmi, L.S., Melchiorre, M., Cavallone, P., and Pastorelli, S. (2020). Design of a UGV powered by solar energy for precision agriculture. Robotics, 9.
  • Gu, (2016), Nucl. Eng. Technol., 48, pp. 982, 10.1016/j.net.2016.02.014
  • (2022, December 30). Drone Docking Stations|Drone Ports, Landing Pads & Hangers for UAS. Available online: https://www.unmannedsystemstechnology.com/expo/drone-docking-stations/.
  • (2022, December 30). Autonomous Drone Station (encata.net). Available online: https://www.encata.net/projects/autonomous-drone-station.
  • (2022, December 30). The Dronebox is a Solar-Powered Charging Station for Drones (digitalspy.com). Available online: https://www.digitalspy.com/tech/a785696/the-dronebox-is-a-solar-powered-charging-station-for-drones/.
  • (2022, December 30). Company Says Its Drone Delivery Stations Will Be Essential For Last-Mile Delivery—Inside Unmanned Systems. Available online: https://insideunmannedsystems.com/company-says-its-drone-delivery-stations-will-be-essential-for-last-mile-delivery/.
  • (2022, December 30). Strix Drones Drone Agnostic Docking Stations—DRONELIFE. Available online: https://dronelife.com/2022/05/06/strix-drones-drone-agnostic-docking-stations-for-advanced-operations/.
  • (2022, December 30). Matternet Drone Delivery: An End to End Solution—Flykit Blog. Available online: https://blog.flykit.app/matternet-drone-delivery-end-to-end/.
  • (2022, December 30). Security Drone|MOBOTIX AG. Available online: https://www.mobotix.com/en/partner-society/new-r-drone.
  • (2022, December 30). DJI Dock: An in–House DJI Drone–in–a–Box Product at Last (Dronedj.com). Available online: https://dronedj.com/2022/03/21/dji-dock-an-in-house-dji-drone-in-a-box-product-at-last/.
  • (2022, December 30). Israeli Drones to Help Florida’s Emergency Response to Hurricane Season|The Times of Israel. Available online: https://www.timesofisrael.com/israeli-drones-to-help-floridas-emergency-response-to-hurricane-season/.
  • (2022, December 30). SkyX Expands with New Aircraft, Drone Charging Stations|General Aviation News: Aviation International News (ainonline.com). Available online: https://www.ainonline.com/aviation-news/general-aviation/2018–07-17/skyx-expands-new-aircraft-drone-charging-stations.
  • (2022, December 30). 10 Best DJI-Compatible Drone Docking Stations To Consider for Autonomy (flytnow.com). Available online: https://www.flytnow.com/blog/dji-compatible-docking-stations.
  • (2022, December 30). Switzerland’s New Medical Drones|Time. Available online: https://time.com/4960622/switzerlands-new-medical-drones/.
  • (2022, December 30). Delivery Drone Station Rigged 3D—TurboSquid 1603549. Available online: https://www.turbosquid.com/3d-models/delivery-drone-station-rigged-3d-1603549.
  • (2022, December 30). Automated Drone Ground Stations by Airmada—UAS VISION. Available online: https://www.uasvision.com/2017/01/17/automated-drone-ground-stations-by-airmada/.
  • (2022, December 30). HOME—Strix Drones. Available online: https://www.strixdrones.com/.
  • (2022, December 30). Heinz Schuller—Vtrus ABI Zero Drone & Base Station (artstation.com). Available online: https://causticphoton.artstation.com/projects/Ya843X.
  • (2022, December 30). Autel now Offers an Automatic Charging Station for EVO II Drones (dronedj.com). Available online: https://dronedj.com/2021/09/29/autel-evo-nest-drone-charging-station/.
  • (2022, December 30). Avy Dock|Drone Station|Avy. Available online: https://avy.eu/our-integrated-solution/avy-dock/.
  • (2022, December 30). DHL Express Launches Its First Regular Fully–Automated and Intelligent Urban Drone Delivery Service|DHL|Global. Available online: https://www.dhl.com/global-en/home/press/press-archive/2019/dhl-express-launches-its-first-regular-fully-automated-and-intelligent-urban-drone-delivery-service.html.
  • (2022, December 30). Skeyetech—Autonomous Drone for Security and Safety—Azur Drones. Available online: https://www.azurdrones.com/product/skeyetech/.
  • (2022, December 30). Airobotics Battery-Swapping Platform Keeps Drones Flying Around the Clock (newatlas.com). Available online: https://newatlas.com/airobotics-system-drones/43985/.
  • (2022, December 30). Hey Drone Industry: Quit Griping, it’s Time to Work With The FAA|ZDNET. Available online: https://www.zdnet.com/article/hey-drone-industry-time-to-work-with-the-faa/.
  • (2022, December 30). How Drone Technologies Are Used in the Current COVID-19 Medical Response Operation—PX4 Autopilot. Available online: https://px4.io/how-drone-technologies-are-used-in-the-current-covid-19-medical-response-operation/.
  • (2022, December 30). Skycharge Launches Drone Charging Port, SKYPORT DP5—Inside Unmanned Systems. Available online: https://insideunmannedsystems.com/skycharge-launches-drone-charging-port-skyport-dp5/.
  • (2022, December 30). Foxit Response—FOXIT. Available online: https://foxit.co.za/foxit-mini/.
  • (2022, December 30). FlytLaunch: Airscort FlytMini (flytnow.com). Available online: https://www.flytnow.com/flytlaunch/airscort-flytmini.
  • (2022, December 30). 드론용 자동충전 스테이션|(주)아르고스다인 (argosdyne.com). Available online: https://www.argosdyne.com/en/stations.
  • (2022, December 30). John Deere Shows Autonomous Sprayers—Profi. Available online: https://www.profi.co.uk/news/john-deere-shows-autonomous-sprayers/.
  • (2022, December 30). Singapore Bets Big on Drones—UAS VISION. Available online: https://www.uasvision.com/2018/12/03/singapore-bets-big-on-drones/.
  • Fujii, K., Higuchi, K., and Rekimoto, J. (2013, January 18–21). December. Endless flyer: A continuous flying drone with automatic battery replacement. Proceedings of the 2013 IEEE 10th International Conference on Ubiquitous Intelligence and Computing and 2013 IEEE 10th International Conference on Autonomic and Trusted Computing, IEEE, Sorrento Peninsula, Italy.
  • Nutting, J., and Mercik, K. (2015). Automated Battery Charger. [Bachelor’s Thesis, Worcester Polytechnic Institute].
  • Barrett, É., Reiling, M., Mirhassani, S., Meijering, R., Jager, J., Mimmo, N., Callegati, F., Marconi, L., Carloni, R., and Stramigioli, S. (2018, January 21–25). Autonomous Battery Exchange of UAVs with a Mobile Ground Base. Proceedings of the 2018 IEEE International Conference on Robotics and Automation (ICRA), Brisbane, Australia.
  • Suzuki, (2012), J. Intell. Robot. Syst., 65, pp. 563, 10.1007/s10846-011-9616-y
  • Herath, H.M.C.W.B., Herath, H.M.S., Sumangala, S.W., de Silva, O., Chathuranga, D., and Lalitharatne, T.D. (2017, January 18–21). Design and development of an automated battery swapping and charging station for Multirotor Aerial Vehicles. Proceedings of the 2017 17th International Conference on Control, Automation and Systems (ICCAS), Ramada Plaza, Jeju, Republic of Korea.
  • Mirzaeinia, A., Hassanalian, M., and Lee, K. (2020, January 4–5). Drones for Borders Surveillance: Autonomous Battery Maintenance Station and Replacement for Multirotor Drones. Proceedings of the AIAA SciTech 2020, Orlando, FL, USA.
  • Mourgelas, C., Kokkinos, S., Milidonis, A., and Voyiatzis, I. (2020, January 20–22). Autonomous drone charging stations: A survey. Proceedings of the 24th Pan-Hellenic Conference on Informatics, Athens, Greece.
  • Bin Junaid, A., Konoiko, A., Zweiri, Y., Sahinkaya, M.N., and Seneviratne, L. (2017). Autonomous wireless self-charging for multi-rotor unmanned aerial vehicles. Energies, 10.
  • (2022, December 30). Skycharge—Autonomouns Charging for Drones and Robots. Available online: https://www.skycharge.de/.
  • (2022, December 30). WiBotic Autonomous Charging. Available online: https://www.wibotic.com/.
  • Galeone, A. (2019). Design and Test of a Multi-Agent Robotic System for Inspection: Coordination and Integration of a Drone and a Robotic Rover. [Master’s Thesis, School of Mechanical and Manufacturing Engineering (SMME), Politecnico di Torino].
  • Hament, B., and Oh, P. (2018, January 12–14). Unmanned aerial and ground vehicle (UAV-UGV) system prototype for civil infrastructure missions. Proceedings of the 2018 IEEE International Conference on Consumer Electronics (ICCE), Berlin, Germany.
  • (2022, December 30). First Ever Flying Robot UGV Launched|Joint Forces News (joint-forces.com). Available online: https://www.joint-forces.com/defence-equipment-news/52110-first-ever-flying-robot-ugv-launched.
  • (2022, December 30). Robot Dog Armed with Machine Gun Airdropped from Drone in Viral Video (taskandpurpose.com). Available online: https://taskandpurpose.com/tech-tactics/robot-dog-machine-gun-drone-airdrop-kestrel-defense-video/.
  • (2022, December 30). Video Friday: Robogami, Flying Snake Robots, and Autonomous Car Eclipse—IEEE Spectrum. Available online: https://spectrum.ieee.org/video-friday-082517.
  • (2022, December 30). Kawasaki’s Supercharged Cargo Copter Tests Robotic Ground Crew (newatlas.com). Available online: https://newatlas.com/drones/kawasaki-supercharged-cargo-drone-robots/.
  • Nagatani, K., Akiyama, K., Yamauchi, G., Otsuka, H., Nakamura, T., Kiribayashi, S., Yoshida, K., Hada, Y., Fujino, K., and Izu, T. (2013, January 21–26). Volcanic ash observation in active volcano areas using teleoperated mobile robots-Introduction to our robotic-volcano-observation project and field experiments. Proceedings of the 2013 IEEE International Symposium on Safety, Security, and Rescue Robotics (SSRR), Linköping, Sweden,.
  • Trotter, D.A. (1983). The Lighting of Underground Mines, CRC Press.
  • Lewis, W.H. (1986). Underground Coal Mine Lighting Handbook (in Two Parts): 2. Application.
  • Papachristos, C., Khattak, S., Mascarich, F., and Alexis, K. (2019, January 2–9). Autonomous navigation and mapping in underground mines using aerial robots. Proceedings of the 2019 IEEE Aerospace Conference, Big Sky, MT, USA.
  • Mascarich, F., Khattak, S., Papachristos, C., and Alexis, K. (2018, January 3–10). A multi-modal mapping unit for autonomous exploration and mapping of underground tunnels. Proceedings of the 2018 IEEE Aerospace Conference, Big Sky, MT, USA.
  • MSHA (1998). Historical Summary of Mine Disasters in the United States. Volume I: Coal Mines.
  • (2022, March 27). Available online: http://www.crushingnquarrying.com/2019/03/15/lighting-in-mines-the-not-so-dark-side.
  • Reddy, (2015), Procedia Earth Planet. Sci., 11, pp. 457, 10.1016/j.proeps.2015.06.045
  • Ohradzansky, M.T., Rush, E.R., Riley, D.G., Mills, A.B., Ahmad, S., McGuire, S., Biggie, H., Harlow, K., Miles, M.J., and Frew, E.W. (2021). Multi-agent autonomy: Advancements and challenges in subterranean exploration. arXiv.
  • Kasper, M., McGuire, S., and Heckman, C. (2019, January 4–8). A benchmark for visual-inertial odometry systems employing onboard illumination. Proceedings of the 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Macau, China.
  • Khattak, S., Nguyen, H., Mascarich, F., Dang, T., and Alexis, K. (2020, January 1–4). Complementary multi–modal sensor fusion for resilient robot pose estimation in subterranean environments. Proceedings of the 2020 International Conference on Unmanned Aircraft Systems (ICUAS), Athens, Greece.
  • Kyriazi, N., and Shubilla, J.P. (1994). Self-Contained Self-Rescuer Field Evaluation: Fourth-Phase Results.
  • Aziz, N.I., Baafi, E.Y., and MacKenzie-Wood, P. (1999, January 1). Deployment of self-contained self rescuers in Australian coal mines. Proceedings of the 8th US Mine Ventilation Symposium, Rolla, MO, USA.
  • Brake, (1999), Proc. AusIMM, 304, pp. 1
  • Rhinehart, (2008), West Va. Law Review., 111, pp. 117
  • Martell, (2020), Light. Res. Technol., 52, pp. 64, 10.1177/1477153519829187
  • Kissell, (1993), Min. Eng., 45, pp. 1077
  • Brenkley, D., Bennett, S.C., and Jones, B. (1999, January 7–11). Enhancing mine emergency response. Proceedings of the 28th International Conference on Safety in Mines Research Institutes, Sinaia, Romania.
  • Gouws, M.J., and Phillips, H.R. (1995, January 7). Post-explosion guidance systems. Proceedings of the 26th International Conference of Safety in Mines Research Institutes, Morgantown, WV, USA.
  • Harteis, S.P., Alexander, D.W., Chasko, L.L., and Slaughter, C.J. (March, January 28). Evaluation of devices to enhance miner self-escape in smoke-filled entries. Proceedings of the Society for Mining, Metallurgy, and Exploration (SME) Annual Meeting, Denver, CO, USA.
  • Conti, R.S. (2001, January 5–7). Responders to underground mine fires. Proceedings of the 32nd Annual Conference of the Institute on Mining Health, Safety and Research, Salt Lake City, UT, USA.
  • Kennedy, W.D., Bayne, M.L., and Sanchez, J.G. (1991). Aerodynamics and Ventilation of Vehicles Tunnels, Elsevier Science Publisher Limited.
  • Dobroski, H., and Stolarczyk, L.G. (1982). Medium frequency radio communication system for mine rescue, Postdisaster Survival and Rescue Research.
  • Raghuram, (2012), J. Theor. Appl. Inf. Technol., 37, pp. 261
  • Sommer, C., and Dressler, F. (2015). Vehicular Networking, Cambridge University Press.
  • Araniti, (2013), IEEE Commun. Mag., 51, pp. 148, 10.1109/MCOM.2013.6515060
  • Kim, (2015), IEEE Photonics J., 7, pp. 1
  • Abualigah, (2021), IEEE Sens. J., 21, pp. 25532, 10.1109/JSEN.2021.3114266
  • Bekmezci, (2013), Ad. Hoc. Netw., 11, pp. 1254, 10.1016/j.adhoc.2012.12.004
  • Wang, J., and Jiang, C. (2022). Flying Ad Hoc Networks: Cooperative Networking and Resource Allocation, Springer Nature.
  • Campion, (2018), J. Unmanned Veh. Syst., 7, pp. 93, 10.1139/juvs-2018-0009
  • Roberge, (2012), IEEE Trans. Ind. Inform., 9, pp. 132, 10.1109/TII.2012.2198665
  • Duan, (2013), IEEE Comput. Intell. Mag., 8, pp. 16, 10.1109/MCI.2013.2264577
  • Rosati, (2015), IEEE Trans. Veh. Technol., 65, pp. 1690, 10.1109/TVT.2015.2414819
  • Bekmezci, (2016), J. Aeronaut. Space Technol., 9, pp. 13
  • Zafar, (2016), IEEE Technol. Soc. Mag., 35, pp. 67, 10.1109/MTS.2016.2554418
  • Sun, (2020), J. Supercomput., 76, pp. 4041, 10.1007/s11227-017-2179-3
  • Lv, (2019), Comput. Commun., 148, pp. 208, 10.1016/j.comcom.2019.09.018
  • Wu, T., Guo, X., Chen, Y., Kumari, S., and Chen, C. (2022). Amassing the security: An enhanced authentication protocol for drone communications over 5G networks. Drones, 6.
  • Bunse, C., and Plotz, S. (2018, January 26–27). Security analysis of drone communication protocols. Proceedings of the Engineering Secure Software and Systems: 10th International Symposium, ESSoS 2018, Paris, France.
  • Long, (2018), IEEE Commun. Mag., 56, pp. 22, 10.1109/MCOM.2017.1700454
  • Salem, (2019), IEEE Wirel. Commun., 26, pp. 18, 10.1109/MWC.2018.1800229
  • (2023, February 08). Available online: https://arlweb.msha.gov/TECHSUPP/acc/application/acri2011.pdf.
  • Mohsan, S.A.H., Khan, M.A., Noor, F., Ullah, I., and Alsharif, M.H. (2022). Towards the unmanned aerial vehicles (UAVs): A comprehensive review. Drones, 6.
  • Dubaniewicz, (2013), IEEE Trans. Ind. Appl., 49, pp. 2451, 10.1109/TIA.2013.2263274
  • Bergveld, H.J., Kruijt, W.S., and Notten, P.H. (2002). Battery Management Systems, Springer.
  • USA Department of Labor (2011). PROGRAM INFORMATION BULLETIN, NO. P11–1.
  • Fotouhi, A., Auger, D.J., O’Neill, L., Cleaver, T., and Walus, S. (2017). Lithium-sulfur battery technology readiness and applications—A review. Energies, 10.
  • Cuffari, B. (2022, December 05). Improving the Safety of Batteries in Underground Coal Mines. Editorial Feature, p. 2. Available online: https://www.azomining.com/Article.aspx?ArticleID=1366.
  • Dvorznak, G.J. (2022, December 05). A Permissibility Checklist for Approved Diesel Powered Coal Mining Equipment. U.S. Department of Labor, Mine Safety and Health Administration, Triadelphia, West Virginia. Available online: https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=0bcc9277062e24c29eb702907816ef203be01832.
  • Baldic, J., Osenar, P., Lauder, N., and Launie, P. (2010, January 6–8). Fuel cell systems for long duration electric UAVs and UGVs. Proceedings of the Defense Transformation and Net-Centric Systems 2010, Orlando, FL, USA.
  • Yoshida, K., and Tadokoro, S. (2014). Field and Service Robotics, Springer. Springer Tracts in Advanced Robotics, vol 92.
  • Yoshida, K., and Tadokoro, S. (2014). Field and Service Robotics, Springer. Springer Tracts in Advanced Robotics, vol 92.
  • Lavigne, (2012), J. Field Robot., 29, pp. 861, 10.1002/rob.21415
  • Neumann, (2015), IFAC-Pap., 48, pp. 60
  • Saeed, (2018), Prog. Aerosp. Sci., 98, pp. 91, 10.1016/j.paerosci.2018.03.007
  • Yao, H., Qin, R., and Chen, X. (2019). Unmanned aerial vehicle for remote sensing applications—A review. Remote Sens., 11.
  • Jones, (2020), J. S. Afr. Inst. Min. Metall., 120, pp. 49, 10.17159/2411-9717/862/2020
  • Tranzatto, (2022), Sci. Robot., 7, pp. eabp9742, 10.1126/scirobotics.abp9742
  • Hudson, N., Talbot, F., Cox, M., Williams, J., Hines, T., Pitt, A., Wood, B., Frousheger, D., Surdo, K.L., and Molnar, T. (2021). Heterogeneous ground and air platforms, homogeneous sensing: Team CSIRO Data61’s approach to the DARPA subterranean challenge. arXiv.
  • Roucek, T., Pecka, M., Cızek, P., Petrıcek, T., Bayer, J., Šalansky, V., Azayev, T., Hert, D., Petrlık, M., and Báca, T. (2021). System for multi-robotic exploration of underground environments CTU-CRAS-NORLAB in the DARPA subterranean challenge. arXiv.
  • Agha, A., Otsu, K., Morrell, B., Fan, D.D., Thakker, R., Santamaria-Navarro, A., Kim, S.-K., Bouman, A., Lei, X., and Edlund, J. (2021). Nebula: Quest for robotic autonomy in challenging environments; team CoSTAR at the DARPA subterranean challenge. arXiv.