Achieving useful data analytics for marketingDiscrepancies in information quality for producers and users of information

  1. Manuel Morales-Serazzi 1
  2. Óscar González-Benito 1
  3. Mercedes Martos-Partal 1
  1. 1 University of Salamanca, Salamanca, Spain
Journal:
Business Research Quarterly

ISSN: 2340-9444 2340-9436

Year of publication: 2023

Volume: 26

Issue: 3

Pages: 196-215

Type: Article

DOI: 10.1177/2340944421996343 DIALNET GOOGLE SCHOLAR lock_openOpen access editor

More publications in: Business Research Quarterly

Abstract

This study proposes as a key cause of the high failure rates in the implementation of analytical projects for marketing decisions, the discrepancy in the information quality (DIQ) perceived between producers (information technology [IT]) and users (marketing) of knowledge. Given that the DIQ between agents is a determining factor in the success of the ability to data analytics, this study focuses on examining this concept and its causes, specifically the resources related to data analytics that influence DIQ. The results of the surveys carried out with the IT and marketing managers of 95 companies in Spain, analyzed with a comparative methodological approach (dyadic), reveal the sources of the discrepancy, namely, the quality of the data, the technological capabilities, the talent, Chief Executive Officer (CEO) support, and alignment of the data plan with the marketing plan.

Bibliographic References

  • Aamodt, A., & Nygård, M. (1995). Different roles and mutual dependencies of data, information, and knowledge: An AI perspective on their integration. Data & Knowledge Engineering, 16(3), 191–222. https://doi.org/10.1016/0169- 023X(95)00017-M
  • Aboobucker, I., Yukun, B., & Mubarak, A. I. (2019). How does business-IT strategic alignment dimension impact on organizational performance measures: Conjecture and empirical analysis. Journal of Enterprise Information Management, 32(3), 457–476. https://doi.org/10.1108/JEIM-09-2018-0197
  • Agarwal, R., & Dhar, V. (2014). Big data, data science, and analytics: The opportunity and challenge for IS research. Information Systems Research, 25(3), 443–448. https://doi. org/10.1287/isre.2014.0546
  • Akter, S., Fosso Wamba, S., Gunasekaran, A., Dubey, R., & Childe, S. J. (2016). How to improve firm performance using big data analytics capability and business strategy alignment? International Journal of Production Economics, 182, 113–131. https://doi.org/10.1016/j.ijpe.2016.08.018
  • Ashraf, K., Aboelhamd, O. M., & Taha, Z. (2017). Explaining the inconsistent results of the impact of information technology investments on firm performance: A longitudinal analysis. Journal of Accounting & Organizational Change, 13(3), 359–380. https://doi.org/10.1108/JAOC-11-2015-0086
  • Ausubel, D. (2000). The acquisition and retention of knowledge: A cognitive view (1st ed.). https://doi.org/10.1007/978-94- 015-9454-7
  • Barney, J. B. (1991). Firm resources and sustained competitive advantage. Journal of Management, 17(1), 99–120. https:// doi.org/10.1177/014920639101700108
  • Barney, J. B. (1995). Looking inside for competitive advantage. Academy of Management Perspectives, 9(4), 49–61. https:// doi.org/10.5465/ame.1995.9512032192
  • Barney, J. B. (2001). Resource-based theories of competitive advantage: A ten-year retrospective on the resource-based view. Journal of Management, 27(6), 643–650. https://doi. org/10.1177/014920630102700602
  • Barney, J. B., Ketchen, D. J., & Wright, M. (2011). The future of resource-based theory: Revitalization or decline? Journal of Management, 37(5), 1299–1315. https://doi.org/10.11 77/0149206310391805
  • Davenport, T. H., Harris, J. G., De Long, D. W., & Jacobson, A. L. (2001). Data to Knowledge to Results: Building an Analytic Capability. California Management Review, 43(2), 117–138. https://doi.org/10.2307/41166078
  • Baron, R. M., & Kenny, D. A. (1986). The moderator-mediator variable distinction in social psychological research: Conceptual, strategic, and statistical considerations. Journal of Personality and Social Psychology, 51(6), 1173–1182.
  • Barton, D., & Court, D. (2012). Making advanced analytics work for you. Harvard Business Review, 90(10), 78–83. https:// doi.org/10.1007/978-3-642-49298-3
  • Bass, B., & Bass, R. (2008). The bass handbook of leadership: Theory, research, and managerial applications (4th ed., R. Riggio, Ed.). Free Press.
  • Beath, C., Becerra-Fernandez, I., Ross, J., & Short, J. (2012, June). Finding value in the information explosion. MIT Sloan Management Review, 53(4), 18–20.
  • Cambridge University Press. (2018). Cambridge dictionary. https://dictionary.cambridge.org/dictionary/english/reliable
  • Carmines, E. G., & Zeller, R. A. (1979). Quantitative applications in the social sciences: Reliability and validity assessment. https://doi.org/10.4135/9781412985642
  • Chae, H. C., Koh, C. E., & Prybutok, V. R. (2014). Information technology capability and firm performance: Contradictory findings and their possible causes. MIS Quarterly: Management Information Systems, 38(1), 305–326. https:// doi.org/10.25300/MISQ/2014/38.1.14
  • Chin, W. W. (1998). The partial least squares approach to structural equation modelling. In G. A. Marcoulides (Ed.), Modern methods for business research (pp. 295–336). Lawrence Erlbaum.
  • Chin, W. W., Johnson, N., & Schwarz, A. (2008). A fast form approach to measuring technology acceptance and other constructs. MIS Quarterly, 32(4), 687–703. https://doi. org/10.2307/25148867
  • CISCO. (2017). Connected futures CISCO research: IoT value: Challenges, breakthroughs, and best practices. https:// www.slideshare.net/CiscoBusinessInsights/journey-to-iotvalue-76163389
  • Constantiou, I., & Kallinikos, J. (2015). New games, new rules: Big data and the changing context of strategy. Journal of Information Technology, 30(1), 44–57. https://doi. org/10.1057/jit.2014.17
  • Davenport, D., Barth, P., & Bean, R. (2012, July). How “big data” is different. MIT Sloan Management Review, 54(1), 43–46.
  • Davenport, T. H. (1998). Putting the enterprise into the enterprise system. Harvard Business Review, 76(4), 121–131.
  • Davenport, T. H. (2006). Competing on analytics. Harvard Business Review, 84(1), 98–107. http://search.ebscohost. com.ezproxy.usal.es/login.aspx?direct=true&db=bth&AN= 19117901&site=ehost-live
  • Davenport, T. H. (2011). Competing on analytics. Harvard Business Review, 84(1), 11.
  • Davenport, T. H. (2014). Big data at work: Dispelling the myths, uncovering the opportunities (1st ed., T. H. Davenport, Ed.). Harvard Business Review Press.
  • Davenport, T. H., & Bean, R. (2018, February). Big companies are embracing analytics, but most still don’t have a data-driven culture. Harvard Business Review. https://hbr. org/2018/02/big-companies-are-embracing-analytics-butmost-still-dont-have-a-data-driven-culture
  • Davenport, T. H., & Harris, J. (2007). Competing on analytics: The new science of winning (1st ed.). Harvard Business School Press.
  • Davenport, T. H., & Harris, J. (2017). Competing on analytics: The new science of winning (1st ed.). Harvard Business School Press.
  • Davenport, T. H., & Kudyba, S. (2016, September). Designing and developing analytics-based data products. MIT Sloan Management Review, 58(1), 83–89. https://doi.org/10.1007/ s11947-009-0181-3
  • Davenport, Thomas, Harris, J., De Long, D., & Jacobson, A. (2001). Data to Knowledge to Results: Building an Analytic Capability. California Management Review, 43(2), 117– 138. https://doi.org/10.2307/41166078
  • Donovan, J. (2001). Work motivation. In N. Anderson, D. Ones, H. Kepir, & C. Viswesvaran (Eds.), Organizational psychology (1st ed., Vol. 2, pp. 52–76). https://doi.org/10.1016/ B0-12-369398-5/00529-6
  • Eichhorn, P., & Towers, I. (2015). Principles of management: Efficiency and effectiveness in the private and public sector. Springer. https://doi.org/10.24926/8668.1801
  • Emerson, R. W. (2015). Convenience sampling, random sampling, and snowball sampling: How does sampling affect the validity of research? Journal of Visual Impairment & Blindness, 109(2), 164–168. https://doi.org/10.1177/01454 82X1510900215
  • Erevelles, S., Fukawa, N., & Swayne, L. (2016). Big Data consumer analytics and the transformation of marketing. Journal of Business Research, 69(2), 897–904. https://doi. org/10.1016/j.jbusres.2015.07.001
  • Falk, R., & Miller, N. B. (1992). A primer for soft modeling. University of Akron Press. http://books.google. com/books/about/A_Primer_for_Soft_Modeling. html?id=3CFrQgAACAAJ
  • Fornell, C., & Larcker, D. F. (1981). Evaluating structural equation models with unobservable variables and measurement error. Journal of Marketing Research, 18, 39–50.
  • Forrester Research. (2011). Trends in data quality and business process alignment. https://docplayer.net/5030274-Trendsin-data-quality-and-business-process-alignment.html
  • Fosso Wamba, S., Akter, S., & de Bourmont, M. (2019). Quality dominant logic in big data analytics and firm performance. Business Process Management Journal, 25(3), 512–532. https://doi.org/10.1108/BPMJ-08-2017-0218
  • Fosso Wamba, S., Akter, S., Edwards, A., Chopin, G., & Gnanzou, D. (2015). How “big data” can make big impact: Findings from a systematic review and a longitudinal case study. International Journal of Production Economics, 165, 234–246. https://doi.org/10.1016/j.ijpe.2014.12.031
  • Fosso Wamba, S., Akter, S., Trinchera, L., & De Bourmont, M. (2019). Turning information quality into firm performance in the big data economy. Management Decision, 57(8), 1756–1783. https://doi.org/10.1108/MD-04-2018-0394
  • Fosso Wamba, S., Gunasekaran, A., Akter, S., Ren, S. J., fan Dubey, R., & Childe, S. J. (2017). Big data analytics and firm performance: Effects of dynamic capabilities. Journal of Business Research, 70, 356–365. https://doi.org/10.1016/j. jbusres.2016.08.009
  • Gackowski, Z. (2013). Strategic alignment of information quality management: Problems and challenges. International Journal of Information Quality, 3(2), 127–138. https://doi. org/10.1504/IJIQ.2013.054278
  • Garcia-Perez, A. (2018). Living with data: Scale, time and space dimensions in a data-driven culture. Social Business, 8(1), 87–93. https://doi.org/10.1362/204440818x15208755029591
  • Gartlan, J., & Shanks, G. (2007). The alignment of business and information technology strategy in Australia. Australasian Journal of Information Systems, 14(2). https://doi. org/10.3127/ajis.v14i2.184
  • Garvin, D. A. (1984, October). What does “product quality” really mean? MIT Sloan Management Review, 26(1). https:// sloanreview.mit.edu/article/what-does-product-qualityreally-mean/
  • Gerow, J. E., Grover, V., & Thatcher, J. (2016). Alignment’s nomological network: Theory and evaluation. Information & Management, 53(5), 541–553. https://doi.org/10.1016/j. im.2015.12.006
  • Grant, R. M. (2016). Contemporary strategy analysis: Text and cases edition (9th ed.). John Wiley.
  • Grover, V., Chiang, R. H. L., Liang, T.-P., & Zhang, D. (2018). Creating strategic business value from big data analytics: A research framework. Journal of Management Information Systems, 35(2), 388–423. https://doi.org/10.1080/07421222 .2018.1451951
  • Gu, J. W., & Jung, H. W. (2013). The effects of IS resources, capabilities, and qualities on organizational performance: An integrated approach. Information and Management, 50(2–3), 87–97. https://doi.org/10.1016/j.im.2013.02.001
  • Gupta, M., & George, J. F. (2016). Toward the development of a big data analytics capability. Information and Management, 53(8), 1049–1064. https://doi.org/10.1016/j.im.2016.07.004
  • Hagen, C., Khan, K., Ciobo, M., & Wall, D. (2013). Big data and the creative destruction of today’s business models. AT Kearney Publication. www.atkearney.com
  • Hair, J., Black, W., Barry, B., & Anderson, R. (2019). Multivariate data analysis (8th ed., C. Learning, Ed.). Annabel Ainscow.
  • Haitovsky, Y. (1969). Multicollinearity in regression analysis: A comment. The Review of Economics and Statistics, 51(4), 486–489. https://doi.org/10.2307/1926450
  • Hayes, A. F. (2018). Introduction to mediation, moderation, and conditional process analysis (2nd ed., Vol. 1, D. A. Kenny, Ed.). The Guilford Press.
  • Heinrich, L. J., Riedl, R., & Stelzer, D. (2014). Informationsmanagement: Grundlagen, Aufgaben, Methoden (11th ed.). De Gruyter Oldenbourg.
  • Hinton, C. M., & Kaye, G. R. (1996). The hidden investments in information technology: The role of organisational context and system dependency. International Journal of Information Management, 16(6), 413–427. https://doi. org/10.1016/0268-4012(96)00030-8
  • Hongwei, Z., Stuart, M. E., Yang, L. W., & Richard, W. Y. (2014). Data and information quality research: Its evolution and future. In H. Topi, & A. Tucker (Eds.), Information systems and information technology (3rd ed., pp. 1–15). Taylor & Francis.
  • Hu, L., & Bentler, P. (1998). Fit indices in covariance structure modeling: Sensitivity to underparameterized model misspecification. Psychological Methods, 3(4), 424–453. https://doi.org/10.1037//1082-989x.3.4.424
  • Hu, L., & Bentler, P. (1999). Cutoff criteria for fit indexes in covariance structure analysis: Conventional criteria versus new alternatives. Structural Equation Modeling, 6(1), 1–55. https://doi.org/10.1080/10705519909540118
  • Hutcheson, G., & Sofroniou, N. (1999). The multivariate social scientist: Introductory statistics using generalized linear models. SAGE.
  • IAB Estudio. (2020, June). Annual Study Social Networks 2020. IAB Spain. https://iabspain.es/presentacion-estudio-redessociales-2020/
  • Isson, J. P., & Harriott, J. (2013). Win with advanced business analytics, creating business value from your data (1st ed.). John Wiley.
  • Iversen, G. R., Kleinbaum, D. G., Kupper, L. L., & Muller, K. E. (1989). Applied regression analysis and other multivariate methods. Journal of the American Statistical Association, 84(407), 839–840. https://doi.org/10.2307/2289682
  • Jiang, J. J., Klein, G., & Saunders, C. (2012). Discrepancy theory models of satisfaction in IS. In Y. K. Dwivedi, M. R. Wade, & S. L. Schneberger (Eds.), Information systems theory (pp. 355–381). https://doi.org/10.1007/978-1- 4419-6108-2_18
  • Kahneman, D. (2011). Thinking, fast and slow. Farrar, Straus and Giroux.
  • Kaplan, R. S., & Norton, D. P. (2008). The execution premium (1st ed.). Harvard Business School.
  • Kaplan, R. S., & Norton, D. P. (2016). The balanced scorecard (3rd ed., Gestión 2000, Ed.). Harvard Business Press.
  • Karimi, J., Somers, T., & Gupta, Y. (2004). Impact of environmental uncertainty and task characteristics on user satisfaction with data. Information Systems Research, 15(2), 175–193. https://doi.org/10.1287/isre.1040.0022
  • Kiron, D., Prentice, P. K., & Ferguson, R. B. (2014, May). The analytics mandate. MIT Sloan Management Review, 55(4), 1. http://sloanreview.mit.edu/analytics-mandate
  • Klein, G., Jiang, J. J., & Cheney, P. (2009). Resolving difference score issues in information systems research. MIS Quarterly, 33(4), 811–826. https://doi.org/10.2307/20650328
  • Langefors, B. (1977). Information systems theory. Information Systems, 2(4), 207–219. https://doi.org/10.1016/0306- 4379(77)90009-6
  • Langer, E. J. (1975). The illusion of control. Journal of Personality and Social Psychology, 32(2), 311–328. https:// doi.org/10.1037/0022-3514.32.2.311
  • Lee, M., & Suk, K. (2010). Disambiguating the role of ambiguity in perceptual assimilation and contrast effects. Journal of Consumer Research, 36(5), 890–897. https://doi. org/10.1086/605299
  • LinkedIn. (2019). About LinkedIn. https://about.linkedin.com/
  • Locke, E. A. (1976). The nature and causes of job satisfaction. In M. D. Dunnett (Ed.), The handbook of industrial and organizational psychology (Vol. 31, pp. 1297–1350). Rand McNally.
  • Locke, E. A., Motowidlo, S. J., & Bobko, P. (1986). Using selfefficacy theory to resolve the conflict between goal-setting theory and expectancy theory in organizational behavior and industrial/organizational psychology. Journal of Social and Clinical Psychology, 4(3), 328–338. https://doi. org/10.1521/jscp.1986.4.3.328
  • Luftman, J., Zadeh, H. S., Derksen, B., Santana, M., Rigoni, E. H., & Huang, Z. D. (2013). Key information technology and management issues 2012-2013: An international study. Journal of Information Technology, 28(4), 354–366. https:// doi.org/10.1057/jit.2013.22
  • Manyika, J., Chui, M., Brown, B., Bughin, J., Dobbs, R., Roxburgh, C., & Hung Byers, A. (2011). Big data: The next frontier for innovation, competition, and productivity. https://bigdatawg.nist.gov/pdf/MGI_big_data_full_report. pdf.
  • Marr, B. (2016). Big data in practice: How 45 successful companies used big data analytics to deliver extraordinary results (1st ed.). John Wiley.
  • Mata, F. J., Fuerst, W. L., & Barney, J. B. (1995). Information technology and sustained competitive advantage: A resource-based analysis. MIS Quarterly, 19(4), 487–505. https://doi.org/10.2307/249630
  • Mithas, S., Lee, M., & Earley, S. (2013, December). Leveraging big data and business analytics. IEEE Computer Society. http:// ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6674024
  • Myers, R. H. (1990). Classical and modern regression with application. Scientific Research. https://doi.org/10.4236/ ib.2011.34051
  • Nah, F. F.-H., Zuckweiler, K. M., & Lee-Shang Lau, J. (2003). ERP implementation: Chief information officers’ perceptions of critical success factors. International Journal of Human–Computer Interaction, 16(1), 5–22. https://doi. org/10.1207/S15327590IJHC1601_2
  • Newbert, S. L. (2007). Empirical research on the resource-based view of the firm: An assessment and suggestions for future research. Strategic Management Journal, 28(2), 121–146. https://doi.org/10.1002/smj.573
  • Newbert, S. L. (2008). Value, rareness, competitive advantage, and performance: A conceptual-level empirical investigation of the resource-based view of the firm. Strategic Management Journal, 29(7), 745–768. https://doi. org/10.1002/smj.686
  • Nunnally, J. C. (2010). Psychometric theory 3E. Tata McGrawHill Education.
  • Owens, R. (2007). Organizational behavior in education (9th ed.). Pearson Education.
  • Palmatier, R. W., Dant, R. P., & Grewal, D. (2007). A comparative longitudinal analysis of theoretical perspectives of interorganizational relationship performance. Journal of Marketing, 71(4), 172–194. https://doi.org/doi.org/10.1509/ jmkg.71.4.172
  • Peak, D., & Guynes, C. S. (2003). The IT alignment planning process. Journal of Computer Information Systems, 44(1), 9–15. https://doi.org/10.1080/08874417.2003.11647546
  • Peiran, G., Yeming, G., Jinlong, Z., Hongyi, M., & Shan, L. (2019). The joint effects of IT resources and CEO support in IT assimilation: Evidence from large-sized enterprises. Industrial Management & Data Systems, 119(6), 1321– 1338. https://doi.org/10.1108/IMDS-08-2018-0345
  • Pérez-Aróstegui, M. N., & Barrales-Molina, V. (2015). Exploring the relationship between information technology competence and quality management. BRQ Business Research Quarterly, 18(1), 4–17. https://doi.org/10.1016/j. brq.2013.11.003
  • Petter, S., DeLone, W., & McLean, E. (2013). Information systems success: The quest for the independent variables. Journal of Management Information Systems, 29(4), 7–62. https://doi.org/10.2753/MIS0742-1222290401
  • Phillips, A. (2016). IJMR-hosted debate: “Who will succeed in the new era of data discovery.” International Journal of Market Research, 58, 473–484.
  • Priem, R. L., & Butler, J. E. (2001). Is the resource-based “view” a useful perspective for strategic management research? Academy of Management Review, 26(1), 22–40. https://doi. org/10.5465/amr.2001.4011928
  • Qualtrics. (2019). About Qualtrics. https://www.qualtrics.com/ es/research-core/
  • Raghunathan, S. (1999). Impact of information quality and decision-maker quality on decision quality: A theoretical model and simulation analysis. Decision Support Systems, 26(4), 275–286. https://doi.org/10.1016/S0167- 9236(99)00060-3
  • Raghunathan, T. S. (1995). Impact of the CEO’s participation on information systems steering committees. Journal of Management Information Systems, 11(4), 83–96. https:// doi.org/10.1080/07421222.1992.11517940
  • Ren, S. J., Fosso Wamba, S., Akter, S., Dubey, R., & Childe, S. J. (2017). Modelling quality dynamics, business value and firm performance in a big data analytics environment. International Journal of Production Research, 55, 5011– 5026. https://doi.org/10.1080/00207543.2016.1154209
  • Riesener, M., Dölle, C., Schuh, G., & Tönnes, C. (2019). Framework for defining information quality based on data attributes within the digital shadow using LDA. Procedia CIRP, 83, 304–310. https://doi.org/10.1016/j.procir.2019.03.131
  • Roach, S. S. (1987). America’s technology dilemma: A profile of the information economy. Morgan Stanley.
  • Rowley, J. (2007). The wisdom hierarchy: Representations of the DIKW hierarchy. Journal of Information Science, 33(2), 163–180. https://doi.org/10.1177/0165551506070706
  • Santhanam, R., & Hartono, E. (2003). Issues in linking information technology capability to firm performance. MIS Quarterly, 27(1), 125–153.
  • Sauer, C. (2003). Rethinking management information systems: An interdisciplinary perspective (W. Currie, & B. Galliers, Eds.). Oxford University Press.
  • Savin, N. E., & White, K. J. (1977). The Durbin-Watson test for serial correlation with extreme sample sizes or many regressors. Econometrica, 45(8), 1989–1996. http://www.jstor. org/stable/1914122
  • Schmiedel, T., vom Brocke, J., & Recker, J. (2014). Development and validation of an instrument to measure organizational cultures’ support of Business Process Management. Information & Management, 51(1), 43–56. https://doi. org/10.1016/j.im.2013.08.005
  • Shadish, W., Cook, T., & Campbell, T. (2002). Experiments and generalized causal inference. In Experimental and quasiexperimental designs for generalized causal inference (pp. 1–81). https://doi.org/10.1198/jasa.2005.s22
  • Spink, A., & Lewandowski, D. (2012). Library and Information Science Trends and Research: Europe (1st ed., A. Spink, Ed.). http://www.amazon.com/dp/1780527144
  • Swaan, M., Driest, F., & Weed, K. (2014, July). The ultimate marketing machine. Harvard Business Review, 1–11.
  • Tambe, P. (2014). Big data investment, skills, and firm value. Management Science, 60(6), 1452–1469. https://doi. org/10.1287/mnsc.2014.1899
  • Tesch, D., Jiang, J. J., & Klein, G. (2003). The impact of information system personnel skill discrepancies on stakeholder satisfaction. Decision Sciences, 34(1), 107–129. https://doi. org/10.1111/1540-5915.02371
  • Thomas, J., Delisle, C. L., Jugdev, K., & Buckle, P. (2002). Selling project management to senior executives: The case for avoiding crisis sales. Project Management Journal, 33(2), 19–28. https://doi.org/10.1177/875697280203300204
  • Tippins, M. J., & Sohi, R. S. (2003). IT competency and firm performance: Is organizational learning a missing link? Strategic Management Journal, 24(8), 745–761. https://doi. org/10.1002/smj.337
  • Tversky, A. (1977). Features of similarity. Psychological Review, 84(4), 327–352. https://doi.org/10.1080/15531 18X.2012.686256
  • Verhoef, P., Kooge, E., & Walk, N. (2016). Creating value with big data analytics: Making smarter marketing decisions (1st ed.). Routledge.
  • Wenting, Z., Brax, S., Mervi, V., & Risto, R. (2019). The influences of contract structure, contracting process, and service complexity on supplier performance. International Journal of Operations & Production Management, 39(4), 525–549. https://doi.org/10.1108/IJOPM-12-2016-0756
  • Whetten, D. A. (1989). What constitutes a theoretical contribution? Academy of Management Review, 14(4), 490–495. https://doi.org/10.5465/amr.1989.4308371
  • White, A. (2019). Gartner blog network. https://blogs.gartner. com/andrew_white/2019/01/03/our-top-data-and-analyticspredicts-for-2019/
  • Wixom, B. H., & Todd, P. A. (2005). A theoretical integration of user satisfaction and technology acceptance. Information Systems Research, 16(1), 85–102. https://doi.org/10.1287/ isre.1050.0042
  • Yong, A., & Pearce, S. (2013). A beginner’s guide to factor analysis: Focusing on exploratory factor analysis. Quantitative Methods for Psychology, 9(2), 79–94. https:// doi.org/10.20982/tqmp.09.2.p079
  • Young, R., & Jordan, E. (2008). Top management support: Mantra or necessity? International Journal of Project Management, 26(7), 713–725. https://doi.org/10.1016/j. ijproman.2008.06.001