Application of artificial intelligence algorithms within the medical context for non-specialized usersthe CARTIER-IA platform

  1. Francisco José García-Peñalvo 1
  2. Andrea Vázquez-Ingelmo 1
  3. Alicia García-Holgado 1
  4. Jesús Sampedro Gómez 2
  5. Antonio Sánchez-Puente 2
  6. Víctor Vicente-Palacios 3
  7. P. Ignacio Dorado-Díaz 2
  8. Pedro L. Sánchez 2
  1. 1 Universidad de Salamanca
    info

    Universidad de Salamanca

    Salamanca, España

    ROR https://ror.org/02f40zc51

  2. 2 Hospital Universitario de Salamanca
    info

    Hospital Universitario de Salamanca

    Salamanca, España

    ROR https://ror.org/0131vfw26

  3. 3 Philips Healthcare España
    info

    Philips Healthcare España

    Madrid, España

Revista:
IJIMAI

ISSN: 1989-1660

Año de publicación: 2021

Volumen: 6

Número: 6

Páginas: 46-53

Tipo: Artículo

DOI: 10.9781/IJIMAI.2021.05.005 DIALNET GOOGLE SCHOLAR lock_openDialnet editor

Otras publicaciones en: IJIMAI

Resumen

The use of advanced algorithms and models such as Machine Learning, Deep Learning and other related approaches of Artificial Intelligence have grown in their use given their benefits in different contexts. One of these contexts is the medical domain, as these algorithms can support disease detection, image segmentation and other multiple tasks. However, it is necessary to organize and arrange the different data resources involved in these scenarios and tackle the heterogeneity of data sources. This work presents the CARTIER-IA platform: a platform for the management of medical data and imaging. The goal of this project focuses on providing a friendly and usable interface to organize structured data, to visualize and edit medical images, and to apply Artificial Intelligence algorithms on the stored resources. One of the challenges of the platform design is to ease these complex tasks in a way that non-AI-specialized users could benefit from the application of AI algorithms without further training. Two use cases of AI application within the platform are provided, as well as a heuristic evaluation to assess the usability of the first version of CARTIER-IA.

Referencias bibliográficas

  • A. Rajkomar, J. Dean, and I. Kohane, “Machine Learning in Medicine,” (in eng), N Engl J Med, vol. 380, no. 14, pp. 1347-1358, 04 2019, doi: 10.1056/ NEJMra1814259.
  • G. Litjens et al., “A survey on deep learning in medical image analysis,” (in eng), Med Image Anal, vol. 42, pp. 60-88, Dec 2017, doi: 10.1016/j. media.2017.07.005.
  • S. González Izard, R. Sánchez Torres, Ó. Alonso Plaza, J. A. Juanes Méndez, and F. J. García-Peñalvo, “Nextmed: Automatic Imaging Segmentation, 3D Reconstruction, and 3D Model Visualization Platform Using Augmented and Virtual Reality,” (in eng), Sensors (Basel), vol. 20, no. 10, p. 2962, 2020, doi: 10.3390/s20102962.
  • S. G. Izard, J. A. Juanes, F. J. García Peñalvo, J. M. G. Estella, M. J. S. Ledesma, and P. Ruisoto, “Virtual Reality as an Educational and Training Tool for Medicine,” Journal of Medical Systems, vol. 42, no. 3, p. 50, 2018/02/01 2018, doi: 10.1007/s10916-018-0900-2.
  • X. Liu et al., “A comparison of deep learning performance against health-care professionals in detecting diseases from medical imaging: a systematic review and meta-analysis,” The lancet digital health, vol. 1, no. 6, pp. e271-e297, 2019.
  • A. Vázquez-Ingelmo, F. J. García-Peñalvo, and R. Therón, “Information Dashboards and Tailoring Capabilities - A Systematic Literature Review,” IEEE Access, vol. 7, pp. 109673-109688, 2019, doi: 10.1109/ ACCESS.2019.2933472.
  • A. Vázquez-Ingelmo, F. J. García-Peñalvo, R. Therón, D. A. Filvà, and D. F. Escudero, “Connecting domain-specific features to source code: towards the automatization of dashboard generation,” Cluster Computing. The Journal of Networks, Software Tools and Applications, p. In Press, 2020, doi: 10.1007/s10586-019-03012-1.
  • A. Sarikaya, M. Correll, L. Bartram, M. Tory, and D. Fisher, “What Do We Talk About When We Talk About Dashboards?,” IEEE Transactions on Visualization Computer Graphics, vol. 25, no. 1, pp. 682 - 692, 2018.
  • Y. Zhonggen, “Visualizing Artificial Intelligence Used in Education Over Two Decades,” Journal of Information Technology Research (JITR), vol. 13, no. 4, pp. 32-46, 2020, doi: 10.4018/JITR.2020100103.
  • J. C. Sánchez-Prieto, J. Cruz-Benito, R. Therón Sánchez, and F. J. García Peñalvo, “Assessed by Machines: Development of a TAM-Based Tool to Measure AI-based Assessment Acceptance Among Students,” International Journal of Interactive Multimedia and Artificial Intelligence, vol. 6, no. 4, p. 80, 2020.
  • O. Bernard et al., “Deep Learning Techniques for Automatic MRI Cardiac Multi-Structures Segmentation and Diagnosis: Is the Problem Solved?,” IEEE Trans Med Imaging, vol. 37, no. 11, pp. 2514-2525, Nov 2018, doi: 10.1109/TMI.2018.2837502.
  • P. Mildenberger, M. Eichelberg, and E. Martin, “Introduction to the DICOM standard,” European radiology, vol. 12, no. 4, pp. 920-927, 2002.
  • D. S. Marcus, T. R. Olsen, M. Ramaratnam, and R. L. Buckner, “The Extensible Neuroimaging Archive Toolkit: an informatics platform for managing, exploring, and sharing neuroimaging data,” (in eng), Neuroinformatics, vol. 5, no. 1, pp. 11-34, 2007, doi: 10.1385/ni:5:1:11.
  • E. Gibson et al., “NiftyNet: a deep-learning platform for medical imaging,” (in eng), Comput Methods Programs Biomed, vol. 158, pp. 113-122, May 2018, doi: 10.1016/j.cmpb.2018.01.025.
  • A. García-Holgado and F. J. García-Peñalvo, “Preliminary validation of the metamodel for developing learning ecosystems,” in Fifth International Conference on Technological Ecosystems for Enhancing Multiculturality (TEEM’17) (Cádiz, Spain, October 18-20, 2017) J. M. Dodero, M. S. Ibarra Sáiz, and I. Ruiz Rube Eds., (ACM International Conference Proceeding Series (ICPS). New York, NY, USA: ACM, 2017.
  • A. García-Holgado and F. J. García-Peñalvo, “Validation of the learning ecosystem metamodel using transformation rules,” Future Generation Computer Systems, vol. 91, pp. 300-310, 2019, doi: 10.1016/j. future.2018.09.011.
  • Django Software Foundation. “Django Web Framework.” https://www. djangoproject.com/ (accessed 15/03/2015.
  • J. Nielsen, “Heuristic evaluation,” in Usability inspection methods, vol. 17, J. Nielsen and R. L. Mack Eds., no. 1): John Wiley & Sons, Inc., 1994, pp. 25-62.
  • A. Tarrell, L. Grabenbauer, J. McClay, J. Windle, and A. L. Fruhling, “Toward improved heuristic evaluation of EHRs,” Health Systems, vol. 4, no. 2, pp. 138-150, 2015/07/01 2015, doi: 10.1057/hs.2014.19.
  • D. Armijo, C. McDonnell, and K. Werner, Electronic health record usability: Evaluation and use case framework. AHRQ Publication No. 09(10)-0091-1- EF. Rockville, MD: Agency for Healthcare Research and Quality, 2009.
  • J. Nielsen, “Finding usability problems through heuristic evaluation,” in CHI ‘92: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems. New York, NY, USA: ACM, 1992, pp. 373–380.
  • P. A. Harris, R. Taylor, R. Thielke, J. Payne, N. Gonzalez, and J. G. Conde, “Research electronic data capture (REDCap)—a metadata-driven methodology and workflow process for providing translational research informatics support,” Journal of biomedical informatics, vol. 42, no. 2, pp. 377-381, 2009.
  • R. Khajouei, A. Ameri, and Y. Jahani, “Evaluating the agreement of users with usability problems identified by heuristic evaluation,” International Journal of Medical Informatics, vol. 117, pp. 13-18, 2018/09/01/ 2018, doi: https://doi.org/10.1016/j.ijmedinf.2018.05.012.