Aplicación de los principios de la teoría cognitiva del aprendizaje multimedia al diseño de situaciones de aprendizaje y escenarios de formaciónRevisión sistemática de literatura

  1. Betancur-Chicué, Viviana 1
  2. García-Valcárcel Muñoz-Repiso, Ana 2
  1. 1 Grupo de investigación: Innovación y Educación Digital (EduDig), Facultad de Educación, Universidad de Salamanca, Salamanca, España & Universidad de la Salle, Colombia.
  2. 2 Grupo de investigación: Innovación y Educación Digital (EduDig), Facultad de Educación, Universidad de Salamanca, Salamanca, España.
Revista:
Education in the knowledge society (EKS)

ISSN: 2444-8729 1138-9737

Año de publicación: 2023

Número: 24

Tipo: Artículo

DOI: 10.14201/EKS.30882 DIALNET GOOGLE SCHOLAR lock_openAcceso abierto editor

Otras publicaciones en: Education in the knowledge society (EKS)

Resumen

La teoría cognitiva del aprendizaje multimedia (TCAM) ha impulsado el desarrollo de múltiples estudios en torno a cómo diseñar materiales y escenarios que logren un verdadero aprendizaje. Teniendo en cuenta estas características, el artículo realiza una revisión de la literatura para identificar las áreas de conocimiento en las que se vienen realizando estudios basados en la TCAM, así como los principales hallazgos a los que han llegado. Para esto, se utiliza una metodología de revisión sistemática de la literatura basada en el estudio de artículos de investigación entre 2018 y 2021 seleccionados a través de Scopus y Web of Science. Se concluye que las áreas donde más se ha explorado el uso de la TCAM ha sido la enseñanza de idiomas (inglés y mandarín), la medicina (combina especialidades médicas y enfermería), la ingeniería (civil, de sistemas, eléctrica) y la geografía. Entre los principales hallazgos se identifican los principios más utilizados, como el de redundancia, señalización y coherencia; se valida la importancia de aplicar los principios de la TCAM en el diseño de materiales y situaciones de aprendizaje para lograr efectos asociados a la reducción de la carga cognitiva. Los estudios resaltan la importancia de su manejo por parte de docentes y diseñadores instruccionales, la relevancia de considerar su aplicación en el diseño de videos educativos y la necesidad de tener en cuenta las condiciones de los estudiantes a los que se dirige la formación.

Referencias bibliográficas

  • Almasseri, M., & AlHojailan, M. I. (2019). How flipped learning based on the cognitive theory of multimedia learning affects students’ academic achievements. Journal of Computer Assisted Learning, 35(6), 769–781. 10.1111/jcal.12386
  • Aravind, B. R., & Rajasekaran, V. (2021). Exploring dysphasia learners’ vocabulary acquisition through the cognitive theory of multimedia learning: an experimental study. International Journal of Emerging Technologies in Learning (IJET), 16(12), 263–275. 10.3991/ijet.v16i12.22173
  • Aysolmaz, B., & Reijers, H. A. (2021). Animation as a dynamic visualization technique for improving process model comprehension. Information & Management, 58(5), 103478. 10.1016/j.im.2021.103478
  • Berardi, S. (2021). Creating an Online Russian as a Foreign Language Course during the COVID-19 Epidemic. Rusistika (Moskva. Online), 19(1), 7–20. 10.22363/2618-8163-2021-19-1-7-20
  • Berntsen, H., & Kristiansen, E. (2019). Successful coach learning: Digital workbook informed by pedagogical principles. International Journal of Sports Science & Coaching, 14(3), 310–323. 10.1177/1747954119835439
  • Burkhart, C., Lachner, A., & Nückles, M. (2021). Using spatial contiguity and signaling to optimize visual feedback on students’ written explanations. Journal of Educational Psychology, 113(5), 998–1023. 10.1037/edu0000607
  • Castro-Alonso, J. C., de Koning, B. B., Fiorella, L., & Paas, F. (2021). Five Strategies for Optimizing Instructional Materials: Instructor- and Learner-Managed Cognitive Load. Educational Psychology Review, 33(4), 1379–1407. 10.1007/s10648-021-09606-9
  • Castro-Alonso, J. C., Wong, R. M., Adesope, O. O., & Paas, F. (2021). Effectiveness of Multimedia Pedagogical Agents Predicted by Diverse Theories: A Meta-Analysis. Educational Psychology Review, 33(3), 989–1015. 10.1007/s10648-020-09587-1
  • Çekiç, A., & Demirezen, M. (2021). Comparison of the impacts of different multimodalities on incidental L2 vocabulary learning. Moderna språk, 114(2), 109–138. 10.58221/mosp.v114i2.7405
  • Chan, K. Y., Lyons, C., Kon, L. L., Stine, K., Manley, M., & Crossley, A. (2020). Effect of on-screen text on multimedia learning with native and foreign-accented narration. Learning and Instruction, 67, 101305. 10.1016/j.learninstruc.2020.101305
  • Chang, C.-C., Warden, C. A., Liang, C., & Lin, G.-Y. (2018). Effects of digital game-based learning on achievement, flow and overall cognitive load. Australasian Journal of Educational Technology, 34(4), 4. 10.14742/ajet.2961
  • Clark, R. C., & Mayer, R. E. (Eds.). (2016). e-Learning and the Science of Instruction: Proven Guidelines for Consumers and Designers of Multimedia Learning (4th ed.). John Wiley & Sons. 10.1002/9781119239086
  • Cojean, S., & Jamet, E. (2022). Does an interactive table of contents promote learning from videos? A study of consultation strategies and learning outcomes. British Journal of Educational Technology, 53(2), 269–285. 10.1111/bjet.13164
  • De Las Peñas, M., Verzosa, D. M., Aberin, M. A. Q., Garces, L. P. D. M., Francisco, F. F., Bautista, E. P., Tolentino, M. A. C., & Tabares, W. C. (2019). Digital Simulations for Grade 7 to 10 Mathematics. Philippine Journal of Science, 148(4), 735–749.
  • Dirkx, K. J. H., Skuballa, I., Manastirean-Zijlstra, C. S., & Jarodzka, H. (2021). Designing computer-based tests: Design guidelines from multimedia learning studied with eye tracking. Instructional Science, 49(5), 589–605. 10.1007/s11251-021-09542-9
  • Drees, C., Ghebremedhin, E., & Hansen, M. (2020). Development of an interactive e-learning software “Histologie für Mediziner” for medical histology courses and its overall impact on learning outcomes and motivation. GMS Journal for Medical Education, 37(3), Doc35. 10.3205/zma001328
  • Dulamă, M. E., & Ilovan, O.-R. (2020). Online university education during the COVID-19 pandemic. How efficient are the adapted instruction models? Journal of Educational Sciences & Psychology, 10(2), 92–111.
  • Ferreira González, I., Urrútia, G., & Alonso-Coello, P. (2011). Revisiones sistemáticas y metaanálisis: Bases conceptuales e interpretación. Revista Española de Cardiología, 64(8), 688–696. 10.1016/j.recesp.2011.03.029
  • Gansemer-Topf, A. M., Paepcke-Hjeltness, V., Russell, A. E., & Schiltz, J. (2021). “Drawing” your Own Conclusions: Sketchnoting as a Pedagogical Tool for Teaching Ecology. Innovative Higher Education, 46(3), 303–319. 10.1007/s10755-020-09542-6
  • García-Peñalvo, F. J. (2022). Developing robust state-of-the-art reports: Systematic Literature Reviews. Education in the Knowledge Society, 23, e28600. 10.14201/eks.28600
  • Greenberg, K., Zheng, R., Gardner, M., & Orr, M. (2021). Individual differences in visuospatial working memory capacity influence the modality effect. Journal of Computer Assisted Learning, 37(3), 735–744. 10.1111/jcal.12519
  • Groshans, G., Mikhailova, E., Post, C., Schlautman, M., Carbajales-Dale, P., & Payne, K. (2019). Digital Story Map Learning for STEM Disciplines. Education Sciences, 9(2), 75. 10.3390/educsci9020075
  • Hadie, S. N. H., Tan, V. P. S., Omar, N., Nik Mohd Alwi, N. A., Lim, H. L., & Ku Marsilla, K. I. (2021). COVID-19 Disruptions in Health Professional Education: Use of Cognitive Load Theory on Students’ Comprehension, Cognitive Load, Engagement, and Motivation. Frontiers in Medicine, 8, 739238. 10.3389/fmed.2021.739238
  • Kamal M. (2019) Effect of interactive video length within e-learning environments on cognitive load, cognitive achievement and retention of learning. Turkish Online Journal of Distance Education, 21(4), 68–89. 10.17718/tojde.803360
  • Kutbay, E., & Akpınar, Y. (2020). Investigating Modality, Redundancy and Signaling Principles with Abstract and Concrete Representation. International Journal of Education in Mathematics, Science and Technology, 8(2), 131–145. 10.46328/ijemst.v8i2.710
  • Lai, A.-F., Chen, C.-H., & Lee, G.-Y. (2019). An augmented reality-based learning approach to enhancing students’ science reading performances from the perspective of the cognitive load theory. British Journal of Educational Technology, 50(1), 232–247. 10.1111/bjet.12716
  • Lin, H.-Y., & Tsai, S.-C. (2021). Student perceptions towards the usage of AR-supported STEMUP application in mobile courses development and its implementation into English learning. Australasian Journal of Educational Technology, 37(3), 88–103. 10.14742/ajet.6125
  • Liu, Y., Jang, B. G., & Roy-Campbell, Z. (2018). Optimum input mode in the modality and redundancy principles for university ESL students’ multimedia learning. Computers & Education, 127, 190–200. 10.1016/j.compedu.2018.08.025
  • Lotero, L. A. A. (2012). Teoría de la carga cognitiva, diseño multimedia y aprendizaje: un estado del arte. Magis, Revista Internacional de Investigación en Educación, 5(10).
  • Mahajan, R., Gupta, K., Gupta, P., Kukreja, S., & Singh, T. (2020). Multimedia Instructional Design Principles: Moving from Theoretical Rationale to Practical Applications. Indian Pediatrics, 57(6), 555–560. 10.1007/s13312-020-1854-2
  • Mayer, R.E. (2011). Applying the science of learning. Pearson. 10.1016/B978-0-12-387691-1.00003-X
  • Mirkovski, K., Gaskin, J. E., Hull, D. M., & Lowry, P. B. (2019). Visual storytelling for improving the comprehension and utility in disseminating information systems research: Evidence from a quasi-experiment. Information Systems Journal, 29(6), 1153–1177. 10.1111/isj.12240
  • Noetel, M., Griffith, S., Delaney, O., Harris, N. R., Sanders, T., Parker, P., del Pozo Cruz, B., & Lonsdale, C. (2022). Multimedia Design for Learning: An Overview of Reviews With Meta-Meta-Analysis. Review of Educational Research, 92(3), 413–454. 10.3102/00346543211052329
  • Noyes, J. A., Carbonneau, K. J., Gotch, C. M., & Matthew, S. M. (2020). Is a Picture Worth a Thousand Words? Evaluating the Design of Instructional Animations in Veterinary Education. Journal of Veterinary Medical Education, 47(1), 69–77. 10.3138/jvme.0118-002r
  • Oakley, B. A., & Sejnowski, T. J. (2019). What we learned from creating one of the world’s most popular MOOCs. Npj Science of Learning, 4(1), 1–7. 10.1038/s41539-019-0046-0
  • Page, M. J., McKenzie, J. E., Bossuyt, P. M., Boutron, I., Hoffmann, T. C., Mulrow, C. D., Shamseer, L., Tetzlaff, J. M., Akl, E. A., Brennan, S. E., Chou, R., Glanville, J., Grimshaw, J. M., Hróbjartsson, A., Lalu, M. M., Li, T., Loder, E. W., Mayo-Wilson, E., McDonald, S., McGuinness, L. A., Stewart, L. A., Thomas, J., Tricco, A. C., Welch, V. A., Whiting, P., & Moher, D. (2021). The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ, 372, n71. 10.1136/bmj.n71
  • Parong, J., & Mayer, R. E. (2018). Learning Science in Immersive Virtual Reality. Journal of Educational Psychology, 110(6), 785–797. 10.1037/edu0000241
  • Ramezanali, N., & Faez, F. (2019). Vocabulary learning and retention through multimedia glossing. Language Learning & Technology, 23(2), 105–124. 10125/44685
  • Rat, A.-C., Ricci, L., Guillemin, F., Ricatte, C., Pongy, M., Vieux, R., Spitz, E., & Muller, L. (2018). Development of a Web-Based Formative Self-Assessment Tool for Physicians to Practice Breaking Bad News (BRADNET). JMIR Medical Education, 4(2), e9551. 10.2196/mededu.9551
  • Raviolo, A. (2019). Images and teaching of Chemistry. Contributions of the Cognitive Theory of Multimedia Learning. Educación química, 30(2), 114–128. 10.22201/fq.18708404e.2019.2.67174
  • Refat, N., Rahman, M. A., Asyhari, A. T., Kassim, H., Kurniawan, I. F., & Rahman, M. (2020). MATT: A Mobile Assisted Tense Tool for Flexible m-Grammar Learning Based on Cloud-Fog-Edge Collaborative Networking. IEEE Access, 8, 66074–66084. 10.1109/ACCESS.2020.2983310
  • Refat, N., Rahman, M. A., Asyhari, A. T., Kurniawan, I. F., Bhuiyan, M. Z. A., & Kassim, H. (2019). Interactive Learning Experience-Driven Smart Communications Networks for Cognitive Load Management in Grammar Learning Context. IEEE Access, 7, 64545–64557. 10.1109/ACCESS.2019.2915174
  • Rey, G. D., Beege, M., Nebel, S., Wirzberger, M., Schmitt, T. H., & Schneider, S. (2019). A Meta-analysis of the Segmenting Effect. Educational Psychology Review, 31(2), 389–419. 10.1007/s10648-018-9456-4
  • Shoufan, A. (2019). Estimating the cognitive value of YouTube’s educational videos: A learning analytics approach. Computers in Human Behavior, 92, 450–458. 10.1016/j.chb.2018.03.036
  • Soicher, R. N., & Becker-Blease, K. A. (2020). Testing the segmentation effect of multimedia learning in a biological system. Journal of Computer Assisted Learning, 36(6), 825–837. 10.1111/jcal.12485
  • Stull, A. T., Fiorella, L., Gainer, M. J., & Mayer, R. E. (2018). Using transparent whiteboards to boost learning from online STEM lectures. Computers & Education, 120, 146–159. 10.1016/j.compedu.2018.02.005
  • Tin, T. G., Atan, N. A., Mohamad Said, M. N. H., Ali, M. F., Mohd, S., & Abd Hamid, M. Z. (2018). Integrating Animations in Chinese Character Writing Based on Cognitive Theory of Multimedia Learning to Promote Students’ Writing Skills. International Journal of Interactive Mobile Technologies, 12(7), 97–111. 10.3991/ijim.v12i7.9671
  • Tomita, K. (2018). Does the Visual Appeal of Instructional Media Affect Learners’ Motivation Toward Learning? TechTrends, 62(1), 103–112. 10.1007/s11528-017-0213-1
  • Tufan, D. (2021). Multimedia design principles for microlearning. In J. R. Corbeil, B. H. Khan, & M. E.Corbeil (Eds.), Microlearning in the Digital Age: The Design and Delivery of Learning in Snippets (pp. 58–79). Routledge. 10.4324/9780367821623-6
  • Wang, T.-K., Huang, J., Liao, P.-C., & Piao, Y. (2018). Does Augmented Reality Effectively Foster Visual Learning Process in Construction? An Eye-Tracking Study in Steel Installation. Advances in Civil Engineering, 2018, e2472167. 10.1155/2018/2472167
  • Werdiningsih, T., Triyono, M. B., & Majid, N. W. A. (2019). Interactive multimedia learning based on mobile learning for computer assembling subject using the principle of multimedia learning (Mayer). International Journal of Advanced Science and Technology, 28(16), 711–719.
  • Yang, C., Chun-Hui, J., Chun-Yen, C., & Yeh, T.-K. (2018). Comparison of Animation and Static-picture based Instruction: Effects on Performance and Cognitive Load for Learning Genetics. Journal of Educational Technology & Society, 21(4), 1–11.