Wildfire impacts on flood regulation and water purification

  1. Marcos Francos 1
  2. Igor Bogunovic 2
  3. Paulo Pereira 3
  1. 1 Universidad de Salamanca
    info

    Universidad de Salamanca

    Salamanca, España

    ROR https://ror.org/02f40zc51

  2. 2 University of Zagreb
    info

    University of Zagreb

    Zagreb, Croacia

    ROR https://ror.org/00mv6sv71

  3. 3 Environmental Management Laboratory, Mykolas Romeris University
Revista:
Pirineos

ISSN: 0373-2568

Año de publicación: 2023

Número: 178

Tipo: Artículo

DOI: 10.3989/PIRINEOS.2023.178006 DIALNET GOOGLE SCHOLAR lock_openAcceso abierto editor

Otras publicaciones en: Pirineos

Resumen

Los incendios forestales son un fenómeno global con repercusiones positivas y negativas en los ecosistemas. Estos son un elemento natural de los ecosistemas que dio forma a diversos biomas. Sin embargo, durante algún tiempo, pueden perturbar los ecosistemas, reduciendo su capacidad para suministrar diversos servicios. El objetivo de este artículo es resumir los impactos de los incendios forestales en la regulación de las inundaciones y la depuración del agua y discutir el uso de algunas medidas de restauración para mitigar los impactos de los incendios forestales. Los incendios forestales, especialmente en el periodo inmediatamente posterior al evento, reducen la capacidad del ecosistema para regular las inundaciones y depurar el agua debido a la eliminación de vegetación y cenizas que pueden degradar la calidad de ese agua. La magnitud de los impactos depende esencialmente de la severidad del incendio forestal y de la intensidad de las precipitaciones posteriores al mismo. Deben aplicarse medidas de restauración, especialmente después de incendios forestales de gran severidad y si la recurrencia es elevada. En el contexto del cambio climático, se espera que el intervalo entre incendios sea más corto y que la severidad sea mayor. Por lo tanto, las medidas de restauración pueden ser más necesarias.

Referencias bibliográficas

  • Alexandra, J. & Finlayson, M., 2020. Floods after bushfires: rapid responses for reducing impacts of sediment, ash, and nutrient slugs. Australasian Journal of Water Resources, 24: 9-11.
  • Barros, T.L., Bracewell, S.A., Mayer-Pinto, M., Dafforn, K.A., Simpson, S.L., Farrell, M. & Johnston, E.L., 2022. Wildfires cause rapid changes to estuarine benthic habitat. Environmental Pollution, 308: 119571.
  • Bento-Gonçalves, A. & Vieira, A., 2020. Wildfires in the wildland-urban interface: Key concepts and evaluation methodologies. Science of The Total Environment, 707: 135592.
  • Blandon, K.D., Emelko, M.B., Silins, U. & Stone, M., 2014. Wildfire and the Future of Water Supply. Environmental Science and Technology, 48: 8936-8943.
  • Brogan, D.J., Nelson, P.A. & MacDonald, L.H., 2019. Spatial and temporal patterns of sediment storage and erosion following a wildfire and extreme flood. Earth Surface Dynamics, 7: 563-590.
  • Chiang, F., Mazdiyasni, O. & Agha-Kouchak, A., 2021. Evidence of anthropogenic impacts on global drought frequency, duration, and intensity. Nature Communications, 12: 2754.
  • Cole, R.P., Blandon, K.D., Wagenbrenner, J.W. & Coe, D.R., 2020. Hillslope sediment production after wildfire and post-fire forest management in northern California. Hydrological Processes, 34: 5242-5259.
  • Coscarelli, R., Aguilar, E., Petrucci, O., Vicente-Serrano, S.M. & Zimbo, F., 2021. The Potential Role of Climate Indices to Explain Floods, Mass-Movement Events and Wildfires in Southern Italy. Climate, 9: 156.
  • Davies, K.W., Wollstein, K., Dragt, B. & O’Connor, C., 2022. Grazing management to reduce wildfire risk in invasive annual grass prone sagebrush communities. Rangelands, 44: 194-199.
  • Dahm, C.N., Candelaria-Ley, R.I., Reale, C.S., Reale, J.K. & Van Horn, D.J., 2015. Extreme water quality degradation following a catastrophic forest fire. Freshwater Biology, 60: 2584-2599.
  • Doerr, S.H., Shakesby, R.A., Blake, W.H., Chafer, C.J., Humphreys, G.S. & Wallbrink, P.J., 2006. Effects of Differing Wildfire Severities on Soil Wettability and Implications for Hydrological Response. Journal of Hydrology, 319: 295-311.
  • Dove, N.C., Safford, H.D., Bohlman, G.N., Estes, B.L. & Hart, S.C., 2020. High-severity wildfire leads to multi-decadal impacts on soil biogeochemistry in mixed-conifer forests. Ecological Applications, 30: e02072.
  • Ebel, B.A. & Moody, J.A., 2020. Parameter estimation for multiple post-wildfire hydrologic models. Hydrological Processes, 34: 4049-4066.
  • Elia, M., Giannico, V., Spano, G., Lafortezza, R. & Sanesi, G., 2020. Likelihood and frequency of recurrent fire ignitions in highly urbanized Mediterranean landscapes. International Journal of Wildland Fire, 29: 120-131.
  • Emelko, M.B., Stone, M., Silins, D., Allin, D., Collins, A.L., Williams, C.S.H., Martens, A.M. & Bladon, K.D., 2016. Sediment-phosphorus dynamics can shift aquatic ecology and cause downstream legacy effects after wildfire in large river systems. Global Change Biology, 22: 1168-1184.
  • Emerton, C.A., Cooke, C.A., Hustins, S., Silins, U., Emelko, M., Lewis, T., Kruk, M.K., Taube, N., Zhu, D., Jackson, B., Stone, M., Kerr, J.G. & Orwin, J.F., 2020. Severe western Canadian wildfire affects water quality even at large basin scales. Water Research, 183: 116071.
  • Etchells, H., O’Donnell, E.J., Lachlan McCaw, W. & Grierson, P.F., 2020. Fire severity impacts on tree mortality and post-fire recruitment in tall eucalypt forests of southwest Australia. Forest Ecology and Management, 459: 117850.
  • Fernandez, C., Fonturbel, T. & Vega, J.A., 2021. Cumulative effects of salvage logging and slash removal on erosion, soil functioning indicators and vegetation in a severely burned area in NW Spain. Geoderma, 393: 115004.
  • Fernandez-Marcos, M.L., 2022. Potentially Toxic Substances and Associated Risks in Soils Affected by Wildfires: A Review. Toxics, 10: 31.
  • Figueiredo, R., Pauperio, E. & Romao, X., 2021. Understanding the Impacts of the October 2017 Portugal Wildfires on Cultural Heritage. Heritage, 4: 2580-2598.
  • Filis, C., Spyrou, N. I., Diakakis, M., Kotroni, V., Lagouvardos, K., Papagiannaki, K. & Lekkas, E., 2020. Post-wildfire flash flooding in small mountainous catchments: post-fire effects and characteristics of the November 2019 flash flood in Kineta, Greece. EGU General Assembly 2020, Vienna.
  • Francos, M., Pereira, P., Alcañiz, M., Mataix-Solera, J. & Úbeda, X., 2016. Impact of an intense rainfall event on soil properties following a wildfire in a Mediterranean environment (North-East Spain). Science of the Total Environment, 572: 1353-1362.
  • Francos, M., Ubeda, X. & Pereira, P., 2019. Impact of torrential rainfall and salvage logging on post-wildfire soil properties in NE Iberian Peninsula. Catena, 177: 210-218.
  • Gomez-Isaza, D.F., Cramp, R.L. & Franklin, C.E., 2022. Fire and rain: A systematic review of the impacts of wildfire and associated runoff on aquatic fauna. Global Change Biology, 28: 2578-2595.
  • Gonzalez-Mathiesen, C., Ruane, S. & March, A., 2021. Integrating wildfire risk management and spatial planning - A historical review of two Australian planning systems. International Journal of Disaster Risk Reduction, 53: 101984.
  • Halofsky, J.E., Peterson, D.L. & Harvey, B.J., 2020. Changing wildfire, changing forests: the effects of climate change on fire regimes and vegetation in the Pacific Northwest, USA. Fire Ecology, 16: 1-26.
  • Henin, R., Ramos, A.M., Pinto, J.G. & Liberato, M.L., 2021. A ranking of concurrent precipitation and wind events for the Iberian Peninsula. International Journal of Climatology, 41: 1421-1437.
  • Hohner, A.K., Rhoades, C.C., Wilkerson, P. & Rosario-Ortiz, F.L., 2019. Wildfires Alter Forest Watersheds and Threaten Drinking Water Quality. Accounts of Chemical Research, 52: 1234-1244.
  • Holz, A., Kitzberger, T., Paritsis, J. & Veblen, T.T., 2012. Ecological and climatic controls of modern wildfire activity patterns across southwestern South America. Ecosphere, 3: 1-25.
  • Jacobs, L., Maes, J., Mertens, K., Sekajugo, J., Thiery, W., van Lipzig, N., Poesen, J., Kervyn, M. & Dewitte, O., 2016. Reconstruction of a flash flood event through a multi-hazard approach: focus on the Rwenzori Mountains, Uganda. Natural Hazards, 84: 851-876.
  • Khorchani, M., Nadal-Romero, E., Lasanta, T. & Tague, C., 2021. Effects of vegetation succession and shrub clearing after land abandonment on the hydrological dynamics in the Central Spanish Pyrenees. Catena, 204: 105374.
  • Liu, T., McGuire, L.A., Oakley, N. & Cannon, F., 2022. Temporal changes in rainfall intensity-duration thresholds for post-wildfire flash floods in southern California. Natural Hazards System Sciences Journal, 22: 361-376.
  • Mansilha, C., Duarte, C.G., Melo, A., Ribeiro, J., Flores, D. & Espinha Marques, J., 2019. Impact of wildfire on water quality in Caramulo Mountain ridge (Central Portugal). Sustainable Water Resources Management, 5: 319-331.
  • Mantero, G., Morresi, D., Marzano, R., Motta, R., Mladenoff. D.J. & Garbarino, M., 2020. The influence of land abandonment on forest disturbance regimes: a global review. Landscape Ecology, 35: 2723-2744.
  • Meneses, B.M., Reis, E., Reis, R. & Vale, M.J., 2019. Post-wildfires effects on physicochemical properties of surface water: the case study of Zêzere watershed (Portugal). Ribagua, 6: 34-48.
  • Moghli, A., Santana, V., Baeza, M.J., Pastor, E. & Soliveres, S., 2022. Fire Recurrence and Time Since Last Fire Interact to Determine the Supply of Multiple Ecosystem Services by Mediterranean Forests. Ecosystems, 25: 1358-1370.
  • Moody, J.A. & Ebel, B.A., 2012. Hyper-dry conditions provide new insights into the cause of extreme floods after wildfire. Catena, 93: 58-63.
  • Mueller, J.M., Lima, R.E., Springer, A.E. & Schiefer, E., 2018. Using Matching Methods to Estimate Impacts of Wildfire and Postwildfire Flooding on House Prices. Water Resources Research, 54: 6189-6201.
  • Muñoz-Rojas, M., Machado de Lima, N., Chamizo, S. & Bowker, M.A. 2021. Restoring post-fire ecosystems with biocrusts: Living, photosynthetic soil surfaces. Current Opinion in Environmental Science & Health, 23: 100273.
  • Murphy, S.F., McCleskey, R.B., Martin, D.A., Holloway, J.M. & Writer, J.H., 2020. Wildfire-driven changes in hydrology mobilize arsenic and metals from legacy mine waste. Science of the Total Environment, 743: 140635.
  • Nyman, P., Sheridan, G.J., Smith, H., Lane, P.J.N., 2011. Evidence of debris flow occurrence after wildfire in upland catchments of south-east Australia. Geomorphology, 125: 383-401.
  • Ortega-Becerril, J.A., Garrote, J., Vicente, Á. & Marqués, M.J., 2022. Wildfire-Induced Changes in Flood Risk in Recreational Canyoning Areas: Lessons from the 2017 Jerte Canyons Disaster. Water, 14: 2345.
  • Pelletier, N., Chetelat, J., Sinon, S. & Vermaire, J.C., 2022. Wildfires trigger multi-decadal increases in sedimentation rate and metal loading to subarctic montane lakes. Science of the Total Environment, 824: 153738.
  • Pereira, P., Francos, M., Brevik, E.C., Ubeda, X. & Bogunovic, I., 2018a. Post-fire soil management. Current Opinion in Environmental Science & Health, 5: 26-32.
  • Pereira, P., Brevik, E.C., Bogunovic, I. & Estebaranz, F., 2018b. Ash and soils. A close relationship in fire affected areas. In: P. Pereira, J. Mataix-Solera, X. Ubeda, G. Rein & A. Cerda (eds), Fire impacts on soils. State of the art and methods used. Sydney, Australia: CSIRO. 39-67 pp.
  • Pereira, P., Bogunovic, I., Zhao, W. & Barcelo, D., 2021. Short-term effect of wildfires and prescribed fires on ecosystem services. Current Opinion in Environmental Science & Health, 22: 100266.
  • Pereira, P., Inacio, M., Kalinauskas, M., Bogdzevič, K., Bogunovic, I. & Zhao, W., 2022. Land-use changes and Ecosystem Services. In: P. Pereira, E. Gomes, J. Rocha (eds), Mapping and forecast land use/cover changes. The Present and Future of Planning. Amsterdam, Netherlands: Elsevier. 1-27 pp.
  • Peshoria, S., Nandini, D., Tanwar, R.K. & Narang, R., 2020. Short-chain and long-chain fluorosurfactants in firefighting foam: a review. Environmental Chemistry Letters, 18: 1277-1300.
  • Piccinelli, S., Brusa, G. & Cannone, N., 2020. Climate warming accelerates forest encroachment triggered by land use change: A case study in the Italian Prealps (Triangolo Lariano, Italy). Catena, 195: 104870.
  • Proctor, C.R., Lee, J., Yu, D., Shah, A.D. & Whelton, A.J., 2020. Wildfire caused widespread drinking water distribution network contamination. AWWA Water Science, 2: e1183.
  • Robinne, F.N., Hallema, D.W., Bladon, K.D. & Buttle, J.M., 2020. Wildfire impacts on hydrologic ecosystem services in North American high-latitude forests: A scoping review. Journal of Hydrology, 581: 124360.
  • Robinne, F.N., Hallema, D.W., Bladon, K.D., Flannigan, M.D., Boisramé, G., Bréthaut, C.M., Doerr, S., Di Baldassarre, G., Gallagher, L.A., Hohner, A.K., Khan, S.J., Kinoshita, A.M., Mordecai, R., Nunes, J.P., Nyman, P., Santín, S., Sheridan, G., Stoof, C.R., Thompson, M.P., Waddington, J.M., & Wei, Y., 2021. Scientists’ warning on extreme wildfire risks to water supply. Hydrological processes, 35: e14086.
  • Roye, D., Lorenzo, N. & Martin-Vide, J., 2018. Spatial-temporal patterns of cloud-to-ground lightning over the northwest Iberian Peninsula during the period 2010-2015. Natural Hazards, 92: 857-884.
  • Rust, A.J., Hogue, T.S., Saxe, S. & McGray, J., 2018. Post-fire water-quality response in the western United States. International Journal of Wildland Fire, 27: 203-216.
  • Rust, A.J., Randell, J., Todd, A.S. & Hogue, T.S., 2019. Wildfire impacts on water quality, macroinvertebrate, and trout populations in the Upper Rio Grande. Forest Ecology and Management, 453: 117636.
  • Santana, V.M., Baeza, M.J., Valdecantos, A. & Vallejo, V.R., 2018. Redirecting fire-prone Mediterranean ecosystems toward more resilient and less flammable communities. Journal of Environmental Management, 215: 108-115.
  • Shakesby, R.A., 2011. Post-wildfire soil erosion in the Mediterranean: Review and future research directions. Earth-Science Reviews, 105: 71-100.
  • Sil, A., Fernandes, P.M., Rodrigues, A.P., Alonso, J.M., Honrado, J.P., Pereira, A. & Azevedo, J.C., 2019. Farmland abandonment decreases the fire regulation capacity and the fire protection ecosystem service in mountain landscapes. Ecosystem Services, 36: 100908.
  • Silva, V., Pereira, J.L., Campos, I., Keizer, J.J., Gonçalves, F. & Abrantes, N., 2015. Toxicity assessment of aqueous extracts of ash from forest fires. Catena, 135: 401-408.
  • Smith-Ramirez, C., Castillo-Mandujano, J., Becerra, P., Sandoval, N., Allende, R. & Fuentes, R., 2021. Recovery of Chilean Mediterranean vegetation after different frequencies of fires. Forest Ecology and Management, 485: 118922.
  • Taboada, A., Garcia-Llamas, P., Fernández-Guisuraga, J.M. & Calvo, L., 2021. Wildfires impact on ecosystem service delivery in fire-prone maritime pine-dominated forests. Ecosystem Services, 50: 101334.
  • Thompson, V.F., Marshall, D.L., Reale, J.K. & Dahm, C.N., 2019. The effects of a catastrophic forest fire on the biomass of submerged stream macrophytes. Aquatic Botany, 152: 36-42.
  • Touma, D., Stevenson, S., Swain, D.L., Singh, D., Kalashnikov, D. & Huang, X., 2022. Climate change increases risk of extreme rainfall following wildfire in the western United States. Science Advances, 8: eabm0320.
  • Turco, M., von Hardenberg, J., AghaKouchak, A., Llasat, M.C., Provenzale, A. & Trigo, R.M., 2017. On the key role of droughts in the dynamics of summer fires in Mediterranean Europe. Scientific Reports, 7: 81.
  • Vieira, N.K.M., Clements, W.H., Guevara, L.S. & Jacobs, B.F., 2004. Resistance and resilience of stream insect communities to repeated hydrologic disturbances after a wildfire. Freshwater Biology, 49: 1243-1259.
  • Yu, M., Bishop, T. & Van Ogtrop, F.F., 2019. Assessment of the Decadal Impact of Wildfire on Water Quality in Forested Catchments. Water, 11: 533.
  • Zazali, H.H., Towers, I.N. & Sharples, J.J., 2019. A critical review of fuel accumulation models used in Australian fire management. International Journal of Wildland Fire, 30: 42-56.