Formas de matematización de la filosofía naturalGalileo y la redefinición sociocognitiva de sus matemáticas

  1. Helbert E. Velilla Jiménez
Revista:
Estudios de Filosofía

ISSN: 0121-3628 2256-358X

Año de publicación: 2018

Número: 57

Páginas: 59-93

Tipo: Artículo

DOI: 10.17533/UDEA.EF.N57A04 DIALNET GOOGLE SCHOLAR lock_openAcceso abierto editor

Otras publicaciones en: Estudios de Filosofía

Resumen

El tema de este artículo es la certeza de las matemáticas en los siglos XVI y XVII. El problema específico del que trata es que las matemáticas, en este contexto, no ofrecen explicaciones causales y por ello no forman parte de la filosofía natural. Mi hipótesis es que la redefinición epistemológica de las matemáticas depende de las prácticas y de factores sociocognitivos; propongo que se redefinen las prácticas y el manejo de los objetos, como el plano inclinado, la balanza, la palanca y el péndulo. Para desarrollar esta hipótesis, en primer lugar, analizaré el problema de la hegemonía de la filosofía natural sobre las matemáticas. En segundo lugar, mostraré la relación de las matemáticas con la filosofía natural a partir de los usos conceptuales y prácticos de los objetos en el contexto galileano. Finalmente, mostraré que sí hay una redefinición práctica y epistemológica de las matemáticas: se redefinen como el estudio de las matemáticas aplicado al movimiento.

Referencias bibliográficas

  • Aristóteles. (1995). Tratados de Lógica (Organon) II. Trad. Miguel Candel S. Madrid: Gredos.
  • Barozzi, F. (1560). Opusculum, in quo una Oratio, et duae Quaestiones: altera de certitudine, et altera de medietate Mathematicarum continentur, Padua, Excudebat Gratiosus Perchacinus
  • Bertoloni-Meli, D. (2006). Thinking with Objects: The Transformation of Mechanics in the Seventeenth Century. Baltimore: The Johns Hopkins University Press.
  • Biancani, G. (1615). De mathematicarum natura dissertatio. Bolonia, B. Cocchi.
  • Biagioli, M. (2008). Galileo cortesano: la práctica de la ciencia en la cultura del absolutismo. Buenos Aires: Katz Editores.
  • Burtt, E. A. (1954). The metaphysical foundations of modern science. Mineola, N.Y: Dover Publications.
  • Catena, P. (1563). Oratio pro idea methodi. Pud Gratiosum Ðerchacinum (IS), Percacino, Grazioso.
  • Crombie, A. C. (1990). Science, Art and Nature in Medieval and Modern Thought. London: The Hambledon Press.
  • Dear, P. (1995). Discipline and Experience: The Mathematical Way in the Scientific Revolution. Chicago and London: University of Chicago Press.
  • Dear, P. (2009). Revolutionizing the Sciences: European Knowledge and its Ambitions, 1500-1700. Houndmills: Palgrave Macmillan.
  • Drake, S. (1975a). Galileo’s New Science of Motion. In M. L. R. Bonelli & W. Shea (Eds.), Reason, experiment, and mysticism in the scientific revolution (pp. 131–156). New York: Science History Publications.
  • Drake, S. (1975b). The Role of Music in Galileo’s Experiments. Scientific American, 232(6), 98–104. https://doi.org/10.1038/scientificamerican0675-98
  • Drake, S. (1978). Galileo at Work: His Scientific Biography. Chicago: University of Chicago Press.
  • Drake, S., & Drabkin, I. E. (1969). Mechanics in sixteenth-century Italy: Selections from Tartaglia, Benedetti, Guido Ubaldo, & Galileo (First Edition edition). Madison: University of Wisconsin Press.
  • Ducheyne, S. (2006). Galileo’s Interventionist Notion of “Cause.” The Journal of the History of Ideas, 67(3), 443–464.
  • Feldhay, R. (1998). The use and abuse of mathematical entities: Galileo and the Jesuits revisited. In The Cambridge Companion to Galileo (pp. 80–145). Cambridge: Cambridge University Press.
  • Finocchiaro, M. (2010). Defending Copernicus and Galileo: Critical Reasoning in the Two Affairs. Heidelberg, London, New york: Springer Science & Business Media.
  • Galilei, G. (1603a, 1604). Folio 107v. Biblioteca Nazionale Centrale/Istituto e Museo di Storia della Scienza, Firenze.
  • Galilei, G. (1603b, 1604). Folio 152r. Biblioteca Nazionale Centrale/Istituto e Museo di Storia della Scienza, Firenze.
  • Galilei, G. (1604). Folio 128r. Biblioteca Nazionale Centrale/Istituto e Museo di Storia della Scienza, Firenze.
  • Galilei, G. (1891). Le opere di Galileo Galilei : edizione nazionale sotto gli auspicii di sua maesta il re d’Italia. (A. Favaro, Ed.) (Vol. 2). Firenze: G. Barbera.
  • Galilei, G. (1900). Le opere di Galileo Galilei : edizione nazionale sotto gli auspicii di sua maesta il re d’Italia. (A. Favaro, Ed.) (Vol. 10). Firenze: G. Barbera.
  • Galilei, G. (1901). Le opere di Galileo Galilei : edizione nazionale sotto gli auspicii di sua maesta il re d’Italia. (A. Favaro, Ed.) (Vol. 11). Firenze: G. Barbera.
  • Galilei, G. (1960). The Assayer. Trad. Stillman Drake and C. D. O’Malley. in The Controversy on the Comets of 1618. Philadelphia: University of Pennsylvania Press.
  • Galilei, G. (1994). Diálogo sobre los dos máximos sistemas del mundo ptolemaico y copernicano. Trad. Antonio Beltrán. Madrid: Alianza.
  • Galilei, G. (2003). Diálogos acerca de dos nuevas ciencias. Trad. José San Román. Buenos Aires: Losada.
  • Galilei, G. (n.d.). De Motu Antiquiora. (R. Fredette, Trans.). Alemania.
  • Giacobbe, G. (1972a). Francesco Barozzi e la quaestio de certitudine mathematicarum. Physis, Rivista Internazionale Di Storia Della Scienza, XIV(4).
  • Giacobbe, G. (1972b). Il Commentarium de certitudine mathematicarum disciplinarum di Alessandro Piccolomini. Physis, Rivista Internazionale Di Storia Della Scienza, XIV(2).
  • Giacobbe, G. (1972c). La quaestio de certitudine mathematicarum all’interno della Scuola Padovana. In Atti del Convegno Internazionale di Storia della Logica, Società Italiana di Logica e Filosofia delle Scienze.
  • Giacobbe, G. (1973). Alcune cinquecentine riguardanti il processo di rivalutazione epistemologica della matematica nell’ambito della rivoluzione scientifica rinascimentale. La Berio, Bollettino Bibliografico Quadrimestrale, XIII(2–3).
  • Giacobbe, G. (1976). Epigoni nel Seicento della quaestio de certitudine mathematicarum: Giuseppe Biancani. Physis, Rivista Internazionale Di Storia Della Scienza, XVIII(1).
  • Giacobbe, G. (1977). Un gesuita progressista nella quaestio de certitudine mathematicarum rinascimentale: Benito Pereyra. Physis, Rivista Internazionale Di Storia Della Scienza, XIX(2).
  • Hahn, A. J. (2002). The Pendulum Swings Again: A Mathematical Reassessment of Galileo’s Experiments with Inclined Planes. Archive for History of Exact Sciences, 56(4), 339–361. https://doi.org/10.1007/s004070200048
  • Henry, J. (2011). Galileo and the scientific revolution: The importance of his kinematics. Galileana, XVIII, 3–36.
  • Jardine, N. (1988). Epistemology of the Sciences. In C. B. Schmitt, Q. Skinner, & E. Kessler (Eds.), The Cambridge History of Renaissance Philosophy (pp. 685–711). Cambridge: Cambridge University Press.
  • Jesseph, D. M. (1999). Squaring the Circle: The War Between Hobbes and Wallis. Chicago and London: University of Chicago Press.
  • Koyré, A. (1966). Études galiléennes. Paris: Hermann.
  • Machamer, P. (1978). Galileo and the Causes. In New Perspectives on Galileo (Vol. 14, pp. 161–180). Dordrecht: Reidel Publishing Company. Retrieved from https://link.springer.com/chapter/10.1007%2F978-94-009-9799-8_5#close
  • Machamer, P. (1998). Galileo’s machines, his mathematics and his experiments. In The Cambridge Companion to Galileo (pp. 53–79). Cambridge: Cambridge University Press.
  • Machamer, P., & Woody, A. (1994). A model of intelligibility in science: Using Galileo’s balance as a model for understanding the motion of bodies. Science & Education, 3(3), 215–244. https://doi.org/10.1007/BF00540155
  • Mancosu, P. (1992). Aristotelian logic and Euclidean mathematics: Seventeenth-century developments of the Quaestio de certitudine mathematicarum. Studies in History and Philosophy of Science Part A, 23(2), 241–265.
  • Martínez, S., & Huang, X. (2011). Introducción: Hacia una filosofía de la ciencia centrada en prácticas. In Historia, prácticas y estilos en la filosofía de la ciencia. Hacia una epistemología plural. (pp. 5–63). México: UAM-Iztapalapa y Miguel Ángel Porrúa.
  • Naylor, R. H. (1974). Galileo and the Problem of Free Fall. The British Journal for the History of Science, 7(2), 105–134.
  • Naylor, R. H. (1977). Galileo’s theory of motion: Processes of conceptual change in the period 1604–1610. Annals of Science, 34(4), 365–392. https://doi.org/10.1080/00033797700200281
  • Naylor, R. H. (1982). Galileo’s law of fall: Absolute truth or approximation. Annals of Science, 39(4), 384–389. https://doi.org/10.1080/00033798200200491
  • Ochoa, F. (2013). De la subordinación a la hegemonía. Sobre la legitimación epistemológica de las matemáticas en la filosofía natural en el siglo XVII. Revista Civilizar Ciencias Sociales Y Humanas, 13(25), 125–176.
  • Pereira, B. (1591). De communibus omnium rerum naturalium principiis & affectionibus: Libri XV. Venetijs,Úndream Muschium.
  • Piccolomini, A. (1565). Commentarium de certitudine mathematicarum disciplinarum in his Alexandri Piccolominei In mechanicas quaestiones Aristotelis, paraphrasis paulo quidem plenior. Eiusdem commentarium de certitudine mathematicarum disciplinarum: in quo, de resolutione, diffinitione & demonstratione: necnon de materia, & in fine logicae facultatis, quamplura continentur ad rem ipsam, tum mathematicam, tum logicam, maxime pertinentia. Venice: Apud Traianum Curtium.
  • Remmert, T. (2005). Galileo, God and Mathematics. In Mathematics and the Divine: A Historical Study. Amsterdam: Elsevier.
  • Rodríguez, L. D., & Romero, Á. (2014). Desarrollos galileanos en el campo de la estática: una posible contribución a la enseñanza. Revista Física Y Cultura, 1(5). Retrieved from http://revistas.pedagogica.edu.co/index.php/RFC/article/view/2602
  • Romo, J. (1985). La física de Galileo. La problemática en torno a la ley caída de los cuerpos. Universidad de Barcelona, Barcelona.
  • Roux, S. (2010). Forms of Mathematization (14th-17th Centuries). Early Science and Medicine, (15), 319–337.
  • Salvia, S. (2014). Galileo’s Machine: Late Notes on Free Fall, Projectile Motion, and the Force of Percussion (ca. 1638–1639). Physics in Perspective, 16(4), 440–460. https://doi.org/10.1007/s00016-014-0149-1
  • Schaffer, S. (1988). Wallifaction: Thomas Hobbes on school divinity and experimental pneumatics. Studies in History and Philosophy of Science Part A, 19(3), 275–298. https://doi.org/10.1016/0039-3681(88)90001-5
  • Schöttler, T. (2012). From Causes to Relations: The Emergence of a Non-Aristotelian Concept of Geometrical Proof out of the Quaestio de Certitudine Mathematicarum. Societate Si Politica, 6(2), 29–47.
  • Shea, W. (1998). Galileo’s Copernicanism: the science and the rethoric. In The Cambridge Companion to Galileo (pp. 211–243). Cambridge: Cambridge University Press.
  • Swerdlow, N. (1998). Galileo’s discoveries with the telescope and their evidence for the Copernican theory. In The Cambridge Companion to Galileo (pp. 244–270). Cambridge: Cambridge University Press.
  • Van Dyck, M. (2006). An archaeology of Galileo’s science of motion. Ghent University, Ghent, Belgium.
  • Velilla, H. (2015a). El debate sobre la certeza de las matemáticas en la filosofía natural de los siglos XVI y XVII (De quaestio de certitudine mathematicarum). Saga - revista de Estudiantes de Filosofía, 16(28), 12–25.
  • Velilla, H. (2015b). Las matemáticas de los siglos XVI y XVII en la historiografía científica contemporánea. Revista Colombiana de Filosofía de La Ciencia, 15(31), 83–104.
  • Wisan, W. (1974). The new science of motion: A study of Galileo’s De motu locali. Archive for History of Exact Sciences, 13(2–3), 103–306. https://doi.org/10.1007/BF00327483
  • Wisan, W. (1977). Mathematics and Experiment in Galileo’s Science of Motion. Annali dell'Istituto E Museo Di Storia Della Scienza Di Firenze, 2(2), 149–160. https://doi.org/10.1163/221058777X01361