Inclusión de futuros de energía eléctrica en portafolios de acciones

  1. JUAN FERNANDO RENDÓN-GARCÍA 1
  2. ALFREDO TRESPALACIOS 1
  3. HERNAN DARÍO VILLADA-MEDINA 1
  4. JUAN GABRIEL VANEGAS-LÓPEZ 1
  1. 1 Instituto Tecnológico Metropolitano, Medellín, Colombia
Revista:
Rect@: Revista Electrónica de Comunicaciones y Trabajos de ASEPUMA

ISSN: 1575-605X

Año de publicación: 2021

Volumen: 22

Número: 1

Páginas: 35-50

Tipo: Artículo

DOI: 10.24309/RECTA.2021.22.1.03 DIALNET GOOGLE SCHOLAR lock_openDialnet editor

Otras publicaciones en: Rect@: Revista Electrónica de Comunicaciones y Trabajos de ASEPUMA

Resumen

El propósito de este trabajo es medir el efecto de incluir un contrato de futuros de energía eléctrica en un portafolio de acciones. Se modeliza el precio de las acciones con un Modelo Browniano Geométrico Multivariado, mientras que el modelo de futuros sobre energía eléctrica empleado considera la volatilidad de corto plazo del mercado, la velocidad de reversión a la media del precio spot y la prima forward de largo plazo (diferencia entre precio esperado de bolsa y el precio del futuro). Esta metodología se aplica a un conjunto de acciones y a un contrato de futuros del mercado colombiano. Los resultados muestran que al incluir un contrato de futuros de electricidad en un portafolio de acciones se presentan movimientos de la frontera eficiente del portafolio en la dirección de la reducción del riesgo que no necesariamente implican una reducción del rendimiento esperado. Además, se observa que a menor volatilidad, menor velocidad de reversión a la media y menor nivel de apalancamiento del contrato de futuro, mayor es el aporte a la diversificación del portafolio (menor riesgo para niveles iguales de rentabilidad esperada). Por otra parte, la prima de riesgo no tiene un efecto significativo sobre la frontera eficiente.

Referencias bibliográficas

  • Agudelo, D. & Gutiérrez, Á. (2011). Anuncios macroeconómicos y mercados accionarios: el caso latinoamericano. Academia. Revista Latinoamericana de Administración, (48), 46-60.
  • Agudelo, D. (2015). Inversiones en renta variable: Fundamentos y aplicaciones al mercadeo accionario colombiano. Universidad EAFIT.
  • Amundsen, E. & Singh, B. (1992). Developing futures markets for electricity in Europe. The Energy Journal, 13(3), 95-112.
  • Awerbuch, S. & Berger, M. (2003). Applying portfolio theory to EU electricity planning and policymaking. IEA/EET, Working Paper 03, 1-70.
  • Bar-Lev, D. & Katz, S. (1976). A portfolio approach to fossil fuel procurement in the electric utility industry. The Journal of Finance, 31(3), 933-947.
  • Barrera, G., Cañón, A. & Sánchez, J. C. (2020). Managing Colombian farmers price risk exposure with electrical derivatives market. Heliyon, 6, 1-15.
  • Björk, T. (2009). Arbitrage theory in continuous time. Oxford University Press.
  • Blackmon, B. (1985). A Futures Market for Electricity: Benefits and Feasibility. Energy and Environmental Policy Center, John F. Kennedy School of Government, Harvard University.
  • Bodie, Z., Kan, A. & Marcus, A. (2018). Investments. McGraw Hill.
  • Boroumand, R. H., & Goutte, S. (2017). Intraday hedging with financial options: the case of electricity. Applied Economics Letters, 24(20), 1448-1454.
  • Boroumand, R., Goutte, S., Porcher, S. & Porcher, T. (2015). Hedging strategies in energy markets: The case of electricity retailers. Energy Economics, 51, 503-509.
  • deLlano-Paz, F., Calvo-Silvosa, A., Antelo, S. & Soares, I. (2017). Energy planning and modern portfolio theory: A review. Renewable and Sustainable Energy Reviews, 77, 636-651.
  • Deng, S. & Oren, S. (2006). Electricity derivatives and risk management. Energy, 31(6-7), 940-953.
  • Faia, R., Pinto, T., Vale, Z. & Corchado, J.M. (2021). Portfolio optimization of electricity markets participation using forecasting error in risk formulation. International Journal of Electrical Power and Energy Systems, 129, 1-12.
  • García, R., González, V., Contreras, J. & Custodio, J. (2017). Applying modern portfolio theory for a dynamic energy portfolio allocation in electricity markets. Electric Power Systems Research, 150, 11- 23.
  • Gaviria, E. & Carrasquilla, A. (2014). Contraste de modelos estocásticos para el precio de la energía en Colombia. Revista de la Facultad de Ciencias, 3(1), 41-55.
  • Hanly, J., Morales, L. & Cassells, D. (2018). The efficacy of financial futures as a hedging tool in electricity markets. International Journal of Finance & Economics, 23(1), 29-40.
  • Hull, J. (2021). Options, futures and other derivatives (11th ed.). Pearson.
  • Jamshidi, M., Kebriaei, H. & Sheikh-El-Eslami, M. (2018). An interval-based stochastic dominance approach for decision making in forward contracts of electricity market. Energy, 158, 383-395.
  • León, S. & Trespalacios, A. (2015). Factores macroeconómicos que influyen en la volatilidad del índice accionario COLCAP [Tesis de maestría, Universidad EAFIT]. Archivo digital.
  • Liu, M. & Wu, F. (2007). Portfolio optimization in electricity markets. Electric Power Systems Research, 77(8), 1000-1009.
  • Liu, M., Wu, F. & Ni, Y. (2006, June). A survey on risk management in electricity markets [conference]. 2006 IEEE Power Engineering Society General Meeting. Montreal, Canada. https://ieeexplore.ieee.org/abstract/document/1709009
  • Lu, X., Lai, K. & Liang, L. (2014). Portfolio value-at-risk estimation in energy futures markets with timevarying copula-GARCH model. Annals of Operations Research, 219(1), 333-357.
  • Lucia, J. & Schwartz, E. (2002). Electricity prices and power derivatives: Evidence from the nordic power exchange. Review of derivatives research, 5(1), 5-50.
  • Maradey, K., Pantoja, J. & Trespalacios, A. (2017). Analysis of the financial margins required to hedge risks in electric power futures markets. Ecos de Economía, 21(45), 67-105.
  • Méndez-Castro, C.M. (2020). Conceptualización del modelo colombiano de commodities de energía eléctrica teniendo como referencia los mercados norteamericano y español. Universidad Nacional de Colombia. Medellín.
  • Mikosch, T. (1998). Elementary stochastic calculus with finance in view. World Scientific.
  • Perea González, A.P. & Zavaleta Vázquez, O.H. (2020). Designing an optimal electricity supply portfolio based on the Markowitz model: The case of a user in Mexico. Contaduría y Administración. 65(1), 1-20.
  • Pilipovic, D. (1998). Energy risk: Valuing and managing energy derivatives. McGraw-Hill.
  • Rendón, J., Hinestroza, A. & Moreno, L. (2011). Determinantes del precio de la energía eléctrica en el mercado no regulado en Colombia. Revista Ciencias Estratégicas, 19(26), 225-246.
  • Rodríguez, D., Trespalacios, A., & Pantoja, J. (2021). Analysis of the risk premium implicit in forward energy contracts. Instituto Tecnológico Metropolitano. Working Paper.
  • Roques, F., Newbery, D. & Nuttall, W. (2008). Fuel mix diversification incentives in liberalized electricity markets: A Mean–Variance Portfolio theory approach. Energy Economics, 30(4), 1831-1849.
  • Sikora, I., Abad, J. & Salvagno, J. (2017). Determinantes del precio spot eléctrico en el sistema interconectado central de Chile. Revista de Análisis Económico, 32(2), 3-38.
  • Sun, B., Wang, F., Xie, J. & Sun, X. (2020). Electricity Retailer Trading Portfolio Optimization Considering Risk Assessment in Chinese Electricity Market. Electric Power Systems Research, 190, 1-12.
  • Trespalacios, A., García, J. & Pantoja, J. (2012). Estrategia de cobertura a través de contratos a plazo en mercados eléctricos. Academia. Revista Latinoamericana de Administración, (50), 148-157.
  • Trespalacios, A., Pantoja, J., & Fernández, O. (2017). Análisis de mercados de electricidad. Universidad EAFIT