Ciencia tecnología e innovación en los libros de texto españoles

  1. Tamar Groves
  2. Modesto Escobar
Journal:
Sistema: revista de ciencias sociales

ISSN: 0210-0223

Year of publication: 2018

Issue Title: Ciencia en sociedad

Issue: 249-250

Pages: 119-136

Type: Article

More publications in: Sistema: revista de ciencias sociales

Sustainable development goals

Abstract

Los libros de texto de la educación obligatoria contienen valiosa información sobre la cultura científica básica a la que tiene acceso la mayor parte del público. En este artículo presentamos los resultados de la aplicación de procedimientos de análisis de contenido a libros de texto de primero y cuarto curso de Educación Secundaria Obligatoria en España. Analizamos en total 81 libros de todas las asignaturas, no solo de ciencias. Para la codificación de los contenidos hemos utilizado un modelo de cultura científica que nos permite distinguir entre información científica y tecnológica propiamente dicha o Intrínseca (conocimientos, procesos y valores científicos), por una parte, y representaciones de, actitudes hacia o valoraciones sobre la ciencia y la tecnología (Cultura Científica y Tecnológica Extrínseca), por otra. El análisis nos permite detectar algunos rasgos relevantes de la cultura científica que se transmite en la enseñanza secundaria obligatoria en España. Destacan especialmente la independencia de los contenidos científicos y tecnológicos, así como la desconexión entre componentes intrínsecos y extrínsecos de la cultura científica. Esto se puede interpretar como el predominio de una concepción academicista de la ciencia, en contraposición a una eventual cultura científica más orientada a la innovación y a la participación ciudadana.

Bibliographic References

  • N. Hutton, «Interactions between the formal UK school science curriculum and the public understanding of science», Public Understanding of Science, 5, 1996, págs. 41-53.
  • J. Solomon, «School science and the future of scientific culture», Public Understanding of Science, 5, 1996, págs. 157-165.
  • J. Basl, «Effect of School on Interest in Natural Sciences: A comparison of the Czech Republic, Germany, Finland, and Norway based on PISA 2006», International Journal of Science Education, 33, 2011, págs. 145-157.
  • J. Bennett, J. y S. Hogarth, «Would You Want to Talk to a Scientist at a Party? High school students’ attitudes to school science and to science», International Journal of Science Education, 31, 2009, págs. 1975-1998.
  • J. Osborne, S. Simon y S. Collins, «Attitudes towards science: A review of the literature and its implications», International Journal of Science Education, 25, 2003, págs. 1049-1079.
  • C. Torres-Albero, M. Fernández-Esquinas, J. Rey-Rocha y M. J. Martín-Sempere, «Dissemination practices in the Spanish research system: scientists trapped in a golden cage», Public Understanding of Science, 20, 2011, págs. 2-25.
  • Fundación Española para la Ciencia y la Tecnología, Percepción Social de la Ciencia y la Tecnología 2010, Spain: FECYT, Madrid, 2011.
  • V. Pérez Díaz, Ciencia, Cultura y Convergencia de España con los Países Avanzados, ASP Research Paper 88 (a), 2009.
  • M. A. Quintanilla, Tecnología: Un enfoque filosófico y otros ensayos de filosofía de la tecnología, Fondo de Cultura Económica, México, 2005, y M. A. Quintanilla, «Cultura, Tecnología e innovación», en E. Aibar y M. A. Quintanilla (eds.), Ciencia, tecnología y sociedad. Enciclopedia Iberoamericana de Filosofía, Consejo Superior de Investigaciones Científicas, Madrid, 2012 (EM).
  • J. Osborne, S. Simon y S. Collins, «Attitudes towards science: A review of the literature and its implications», op. cit.
  • M. Koppal y A. Caldwell, «Meeting the challenge of science literacy: Project 2061 efforts to improve science education», Cell Biology Education, 3, 2004, págs. 28-30.
  • E. L. Chiappetta, D. A. Fillman y G. H. Sethna, «A Method to Quantify Major Themes of Scientific Literacy in Science Textbooks», Journal of Research in Science Teaching, 28, 1991, págs. 713-725.
  • A. Kahveci, «Quantitative Analysis of Science and Chemistry Textbooks for Indicators of Reform: A complementary perspective», International Journal of Science Education, 32, 2010, págs. 1495–1519.
  • J. Wilkinson, «A Quantitative Analysis of Physics Textbooks for Scientific Literacy Themes», Research in Science Education, 29, 1999, págs. 385-399.
  • E. L. Chiappetta y D. A. Fillman, «Analysis of five high school biology textbooks used in the United States for inclusion of the nature of science», International Journal of Science Education, 29, 2007, págs. 1847–1868.
  • F. Abd-El-Khalick, F. M. Waters y A. P. Le, «Representations of Nature of Science in High School Chemistry Textbooks over the Past Four Decades», Journal of Research in Science Teaching, 45 (7), 2008, págs. 835–855
  • V. M. Vesterinen, M. Aksela y J. Lavonen, «Quantitative Analysis of Representations of Nature of Science in Nordic Upper Secondary School Textbooks Using Framework of Analysis Based on Philosophy of Chemistry», Science & Education, Online First, 2011.
  • G. Benoit e Y. Gingras, «What is scientific and technological culture and how is it measured? A multidimensional model», Public Understanding of Science, 9, 2000, págs. 43-58.
  • M. W. Bauer, N. Allum y S. Miller, «What can we learn from 25 years of PUS survey research? Liberating and expanding the agenda», Public Understanding of Science, 16, 2007, págs. 79–95.
  • J. Mosterín, Filosofía de la cultura, Alianza, Madrid, 1993.
  • E. Revilla y M. Jacob, Innovación tecnológica. Ideas básicas, COTEC, Madrid, 2001.
  • J. Acevedo, «El estado actual de la naturaleza de la ciencia en la didáctica de las ciencias», Revista Eureka sobre Enseñanza y Divulgación de las Ciencias, 5(2), 2008, págs. 134-169.
  • E. Pedrinaci Rodríguez, «¿Tiene sentido una materia como las Ciencias para el mundo contemporáneo?», Enseñanza de las ciencias de la tierra: Revista de la Asociación Española para la Enseñanza de las Ciencias de la Tierra, 16: 1, 2008, págs. 9-16