Fases del modelo didáctico-procesal seguidas en la construcción de simulaciones en la asignatura de física médica para el contexto de enseñanza-aprendizaje virtual

  1. Sánchez García, Ana Belén 1
  2. Cabrero Fraile, Javier 1
  3. José Miguel Sánchez Llorente 1
  1. 1 Universidad de Salamanca (España)
RIED: revista iberoamericana de educación a distancia

ISSN: 1138-2783

Year of publication: 2012

Volume: 15

Issue: 2

Pages: 13-30

Type: Article

DOI: 10.5944/RIED.2.15.596 DIALNET GOOGLE SCHOLAR lock_opene-spacio editor

More publications in: RIED: revista iberoamericana de educación a distancia

Sustainable development goals


This research paper is a theoretical and applied analysis of the phases of the pedagogical model followed in the construction of simulations in the field of Medical Physics. There is also an analysis of how the model contributes to the acquisition of procedural knowledge in medical education and how simulators are useful for the teaching of processes. By following the phases of this model in a particular case, some specific information has been obtained about an interactive simulation which was designed for the purpose of investigating the magnetic resonance phenomenon. This simulation was used as a teaching resource on a virtual education platform. It is important to note the interdisciplinary contributions of Cognitive Psychology, Information Technology, Education Sciences, Physics and Medicine. All of these fields contributed to the analysis of the way in which the acquisition of problem solving skills required in Medical Physics occurs through the use of simulations.

Bibliographic References

  • Anderson, J. (1983). The architecture of cognition. Cambridge, Massachusetts, EE.UU.: Harvard University Press.
  • Anderson, J. (1990). The Adaptive Character of Thought. Lawrence Erlbaum.
  • Brusilovskiy, P. (1994). The Construction and Application of Student Models in Intelligent Tutoring Systems. Journal of Computer and Systems Sciences International, 32 (1), (70-89).
  • Cabrero, F. J. (2004). Imagen radiológica. Principios físicos e instrumentación. Barcelona: Masson, S. A.
  • Cabrero, F. J.; Sánchez, J. M.; Sánchez, A. B.; Borrajo, J.; Rodríguez, M. J.; Cabrero, M.; Juanes, J. A. (2010). Simulaciones computacionales en la enseñanza de la Física Médica. TESI, 11 (2), (46-74).
  • Cameron, B. H. (2003). The effectiveness of simulation in a hybrid and online net working course. Quarterly Review of Distance Education, 4, (51-55).
  • Clark, R. (2004). What Works in distance learning: instructional strategies. En: O´Neil, H. F. (Ed.). What works in distance learning: Guidelines. Greenwich, CT: Information Age Publishing, (25-40).
  • Ernst, G.; Newell, A. (1969). GPS: A Case Study in Generality and Problem Solving. New York: Academic Press.
  • Feldman, H. D. (1995). Computer-Based Simulation Games: A Viable Educational Technique for Entrepreneurship Classes? Simulation & Gaming. An international Journal of Theory, Design and Research. Newbury Park, London, New Delhi: Sage Periodicals Press, 26 (3), (346–360).
  • Fitts, P. M.; Posner, M. I. (1967). Human Performance: Basic concepts in Psychology Series. Belmont CA: Boocks-Cole.
  • Lave, J. (1997). The culture of acquisition and the practice of understanding. En: Kirshner, D.; Whitson, J. A. (Eds.). Situated cognition. Social, semiotic and psychological perspectives (17-35). Mahwah, NJ: Lawrence Erlbaum.
  • López, R. (1999). Desarrollos curriculares de la ciencia de computadores en la enseñanza elemental. Tesis doctoral no publicada. Universidad de Salamanca, Facultad de Educación, Salamanca. España.
  • Munro, A.; Surmon, D.; Pizzini, Q. (2006). Teaching Procedural Knowledge in Distance Learning Environments. En: O´Neil, H. F.; Perez, R. S. (Eds). WebBased Learning. Theory, Research, and Practice. Mahwah, New Jersey: Lawrence Erlbaum Associates, (255- 279).
  • Newell, A. (1990). Unified Theories of Cognition. Cambridge, MA: Harvard.
  • Monsky, W. L.; Levine, D.; Mehta, T. S.; Kane, R. A.; Ziv, A.; Kennedy, B.; Nisnbaum, H. (2002). Using a sonographic simulator to assess residents before overnight call. AJR, 178, (35-39).
  • Rogoff, B. (1993). Aprendices del pensamiento. El desarrollo cognitivo en el contexto social. Barcelona: Paidós.
  • Sánchez, A. B.; López, R. (2011). La transferencia de aprendizaje algorítmico y el origen de los errores en la sustracción. Revista de Educación, 354,(429-445).
  • Shirts, R. G. (1975). Notes on defining “Simulation”. En: Greenblat, C. S.; Duke, R. D. (Eds.). Gaming-simulation: Rationale, design and applications. A text with parallel readings for social scientists, educators, and community workers.Toronto: Wiley & Sons.
  • Simon, H. A. (1979). Models of Thought. New Haven, CT: Yale University Press
  • Shoikova, E.; Tzanova, S. (1999). Innovaciones en la Educación Superior en Electrónica a través del Desarrollo de un Entorno de Aprendizaje Basado en Simulaciones y Conducido por Desarrollo de Proyectos. RIED. Revista Iberoamericana de Educación a Distancia, 2 (2), (125-135).
  • Tabakov, S. (2005). E-Learning in Medical Engineering and Physics. Journal of Medical Engineering and Physics, 27 (7), (543-547).
  • Tabakov, S. (2008). e-Learning development in medical physics and engineering. BiomedImaging Interv J., 4 (1):e27, (1-5). [En línea] Disponible en: http:// www.biij.org/2008/1/E27 (consulta 2012, 15 de marzo).
  • Thorndike, E. L. (1924). Mental discipline in high school studies. Journal of Educational Psychology, 15, (1-22).
  • Vanlehn, K.; Ohlsson, S.; Nason, R. (1994). Applications of Simulated Students: An Exploration. Journal of Artificial Intelligence in Education, 2, (135-175).
  • Wenger, E. (2001). Comunidades de práctica. Aprendizaje, significado e identidad. Barcelona: Paidós.
  • Weller, J. (2004). Simulation in undergraduate medical education: bridging the gap between theory and practice. Med Educ, 38, (32-8).