Efficiency, profitability and productivitytechnological applications in the agricultural sector

  1. Pérez-Pons, María Eugenia 1
  2. Parra-Domínguez, Javier 1
  3. Chamoso, Pablo 1
  4. Plaza, Marta 1
  5. Alonso Rincón, Ricardo S.
  1. 1 Universidad de Salamanca

    Universidad de Salamanca

    Salamanca, España

    ROR https://ror.org/02f40zc51

ADCAIJ: Advances in Distributed Computing and Artificial Intelligence Journal

ISSN: 2255-2863

Year of publication: 2020

Volume: 9

Issue: 4

Pages: 47-54

Type: Article

DOI: 10.14201/ADCAIJ2020944754 DIALNET GOOGLE SCHOLAR lock_openOpen access editor

More publications in: ADCAIJ: Advances in Distributed Computing and Artificial Intelligence Journal


New technological advances have made it possible to improve precision and efficiency in the consumption of natural resources. This article presents a series of different use cases in which technology has benefited peripheral and cross-border areas and continues to do so. Real-scenario implementations of cutting-edge Internet of Things (IoT) technologies have been conducted in Northern Portugal and Castilla y León. The findings demonstrate the direct impact of technological applications on the regions and the production efficiency.

Bibliographic References

  • Abdullah, F. A., & Samah, B. A. (2013). Factors impinging farmers’ use of agriculture technology. Asian Social Science, 9(3), 120.
  • Álamo, S., Ramos, M. I., Feito, F. R., & Cañas, A. (2012). Precision techniques for improving the management of the olive groves of southern Spain. Spanish Journal of agricultural research, (3), 583-595.
  • Alonso, R. S., Sittón-Candanedo, I., García, Ó., Prieto, J., & Rodríguez-González, S. (2020). An intelligent Edge-IoT platform for monitoring livestock and crops in a dairy farming scenario. Ad Hoc Networks, 98, 102047.
  • Alonso, R. S., Tapia, D. I., & Corchado, J. M. (2011). Sylph: A platform for integrating heterogeneous wireless sensor networks in ambient intelligence systems. International Journal of Ambient Computing and Intelligence (IJACI), 3(2), 1-15.
  • Ashraf, C. K. (2012). The relationship between working capital efficiency and profitability. Advances in management.
  • Balaji, S., Nathani, K., & Santhakumar, R. (2019). IoT technology, applications and challenges: a contemporary survey. Wireless personal communications, 108(1), 363-388
  • Bhakta, I., Phadikar, S., & Majumder, K. (2019). State‐of‐the‐art technologies in precision agriculture: a systematic review. Journal of the Science of Food and Agriculture, 99(11), 4878-4888.
  • Chandra, A. A., & Lee, S. R. (2014). A method of WSN and sensor cloud system to monitor cold chain logistics as part of the IoT technology. International Journal of Multimedia and Ubiquitous Engineering, 9(10), 145-152.
  • Cox, S. (2002). Information technology: the global key to precision agriculture and sustainability. Computers and electronics in agriculture, 36(2-3), 93-111.
  • De Miguel Hidalgo, A., Parra Domínguez, J. & Benzinho, J.M. (2014). Costes de Contexto Tranfronterizos en el ámbito Empreserial- Territorio BIN-SAL (p.183). Diputación de Salamanca: OAEDER.
  • Domínguez, J. P., Sánchez, I. M. G., & Domínguez, L. R. (2015). Relationship between police efficiency and crime rate: a worldwide approach. European Journal of Law and Economics, 39(1), 203-223.
  • Duhan, J. S., Kumar, R., Kumar, N., Kaur, P., Nehra, K., & Duhan, S. (2017). Nanotechnology: The new perspective in precision agriculture. Biotechnology Reports, 15, 11-23.
  • Färe, R., Grosskopf, S., & Lovell, C. K. (2013). The measurement of efficiency of production (Vol. 6). Springer Science & Business Media.
  • Farrell, M. J. (1957). The measurement of productive efficiency. Journal of the Royal Statistical Society: Series A (General), 120(3), 253-281.
  • Garibaldi, L. A., & Pérez-Méndez, N. (2019). Positive outcomes between crop diversity and agricultural employment worldwide. Ecological Economics, 164, 106358.
  • Gibbons, G. (2000). Turning a farm art into science-an overview of precision farming. URL: https://www.precisionfarming.com.
  • Lindblom, J., Lundström, C., Ljung, M., & Jonsson, A. (2017). Promoting sustainable intensification in precision agriculture: review of decision support systems development and strategies. Precision Agriculture, 18(3), 309-331.
  • Loizou, E., Karelakis, C., Galanopoulos, K., & Mattas, K. (2019). The role of agriculture as a development tool for a regional economy. Agricultural Systems, 173, 482-490.
  • Lowry, G. V., Avellan, A., & Gilbertson, L. M. (2019). Opportunities and challenges for nanotechnology in the agri-tech revolution. Nature nanotechnology, 14(6), 517-522.
  • Mulla, D.J. 2013. Twenty five years of remote sensing in precision agriculture: Key advances and remaining knowledge gaps. Biosyst. Eng. 114:358-371.
  • Rifkin, J. (2011). The third industrial revolution: how lateral power is transforming energy, the economy, and the world. Macmillan.
  • Rossi, V., Salinari, F., Poni, S., Caffi, T., & Bettati, T. (2014). Addressing the implementation problem in agricultural decision support systems: the example of vite. net®. Computers and Electronics in Agriculture, 100, 88-99.
  • Salam, A., & Shah, S. (2019, April). Internet of things in smart agriculture: Enabling technologies. In 2019 IEEE 5th World Forum on Internet of Things (WF-IoT) (pp. 692-695). IEEE.
  • Satyanarayanan, M. (2017). The emergence of edge computing. Computer, 50(1), 30-39.
  • Say, S. M., Keskin, M., Sehri, M., & Sekerli, Y. E. (2018). Adoption of precision agriculture technologies in developed and developing countries. Online J. Sci. Technol, 8(1), 7-15.
  • Serrano, J. M., Shahidian, S., & da Silva, J. R. M. (2013). Small scale soil variation and its effect on pasture yield in southern Portugal. Geoderma, 195, 173-183.
  • Sittón-Candanedo, I., Alonso, R. S., Corchado, J. M., Rodríguez-González, S., & Casado-Vara, R. (2019). A review of edge computing reference architectures and a new global edge proposal. Future Generation Computer Systems, 99, 278-294.
  • Stafford, J. V. (2000). Implementing precision agriculture in the 21st century. Journal of Agricultural Engineering Research, 76(3), 267-275.
  • Zhang, N., Wang, M., & Wang, N. (2002). Precision agriculture—a worldwide overview. Computers and electronics in agriculture, 36(2-3), 113-132.
  • Zhao, J. C., Zhang, J. F., Feng, Y., & Guo, J. X. (2010, July). The study and application of the IOT technology in agriculture. In 2010 3rd International Conference on Computer Science and Information Technology (Vol. 2, pp. 462-465). IEEE.