Anisotropy and Texture development in mylonitic felsic granulites of the Sobrado Unit (NW Iberia)

  1. J.M. Benítez-Pérez 1
  2. J. Gómez-Barreiro 1
  3. J.R. Martínez Catalán 1
  4. H-R. Wenk 2
  5. S.C. Vogel 3
  6. Bachir Ouladdiaf 4
  7. L. Mancini 5
  1. 1 Universidad de Salamanca
    info
    Universidad de Salamanca

    Salamanca, España

    ROR https://ror.org/02f40zc51

    Geografischer Standort der Organisation Universidad de Salamanca
  2. 2 University of California System
    info
    University of California System

    Oakland, Estados Unidos

    ROR https://ror.org/00pjdza24

    Geografischer Standort der Organisation University of California System
  3. 3 Los Alamos Neutron Science Center
  4. 4 Institut Laue-Langevin
    info
    Institut Laue-Langevin

    Grenoble, Francia

    ROR https://ror.org/01xtjs520

    Geografischer Standort der Organisation Institut Laue-Langevin
  5. 5 Sincrotrone Trieste S.C.p.A.
Zeitschrift:
Geotemas (Madrid)

ISSN: 1576-5172

Datum der Publikation: 2016

Titel der Ausgabe: IX CONGRESO GEOLÓGICO DE ESPAÑA

Nummer: 16

Seiten: 479-482

Art: Artikel

Andere Publikationen in: Geotemas (Madrid)

Ziele für nachhaltige Entwicklung

Zusammenfassung

Quantitative fabric analyses of mylonitic felsic granulites from the Sobrado unit (Upper allochthon, Órdenes Complex, NW Iberia) have been done with HIPPO, a Time-Of-Flight (TOF) neutron diffractometer (LANSCE center; Los Alamos National Lab) and D1B, a pulsed neutron diffractometer (ILL center, Institut Laue-Langevin). Shape analyses of selected phases were done with X–ray computed microtomography at ELETTRA (SYRMEP beamline). The Sobrado unit represents and excellent example of laminated mid/lower crust. The unit is a tectonic stack of highly deformed slices of metabasites, paragneisses and ultramafic rocks with metamorphism ranging from amphibolite facies on top, to eclogites facies at the bottom. Contrasted rheological behavior suggests that felsic lithologies accommodated most of the flow during the exhumation. We explore the crystallographic preferred orientation or texture to constraint the deformation mechanisms and determine their contribution to the elastic anisotropy of the aggregate. Microstructure and texture evolution suggests that deformation evolved from granulite to amphibolite facies along a N-S flow, driven by dislocation creep partially assisted by grain boundary sliding and diffusion. The kinematic and mechanical implications are discussed in terms of the regional geology.