Anisotropy and Texture development in mylonitic felsic granulites of the Sobrado Unit (NW Iberia)

  1. J.M. Benítez-Pérez 1
  2. J. Gómez-Barreiro 1
  3. J.R. Martínez Catalán 1
  4. H-R. Wenk 2
  5. S.C. Vogel 3
  6. Bachir Ouladdiaf 4
  7. L. Mancini 5
  1. 1 Universidad de Salamanca
    info

    Universidad de Salamanca

    Salamanca, España

    ROR https://ror.org/02f40zc51

  2. 2 University of California System
    info

    University of California System

    Oakland, Estados Unidos

    ROR https://ror.org/00pjdza24

  3. 3 Los Alamos Neutron Science Center
  4. 4 Institut Laue-Langevin, Neutron for Science
  5. 5 Sincrotrone Trieste S.C.p.A.
Revista:
Geotemas (Madrid)

ISSN: 1576-5172

Ano de publicación: 2016

Título do exemplar: IX CONGRESO GEOLÓGICO DE ESPAÑA

Número: 16

Páxinas: 479-482

Tipo: Artigo

Outras publicacións en: Geotemas (Madrid)

Resumo

Quantitative fabric analyses of mylonitic felsic granulites from the Sobrado unit (Upper allochthon, Órdenes Complex, NW Iberia) have been done with HIPPO, a Time-Of-Flight (TOF) neutron diffractometer (LANSCE center; Los Alamos National Lab) and D1B, a pulsed neutron diffractometer (ILL center, Institut Laue-Langevin). Shape analyses of selected phases were done with X–ray computed microtomography at ELETTRA (SYRMEP beamline). The Sobrado unit represents and excellent example of laminated mid/lower crust. The unit is a tectonic stack of highly deformed slices of metabasites, paragneisses and ultramafic rocks with metamorphism ranging from amphibolite facies on top, to eclogites facies at the bottom. Contrasted rheological behavior suggests that felsic lithologies accommodated most of the flow during the exhumation. We explore the crystallographic preferred orientation or texture to constraint the deformation mechanisms and determine their contribution to the elastic anisotropy of the aggregate. Microstructure and texture evolution suggests that deformation evolved from granulite to amphibolite facies along a N-S flow, driven by dislocation creep partially assisted by grain boundary sliding and diffusion. The kinematic and mechanical implications are discussed in terms of the regional geology.