PhyFire: An Online GIS-Integrated Wildfire Spread Simulation Tool Based on a Semiphysical Model

  1. Álvarez, D.
  2. Laiz, P.
  3. Prieto, D. 1
  4. Asensio, M. I. 1
  5. Pagnini, G.
  6. Ferragut, L. 1
  7. Cascón, J. M. 1
  1. 1 Universidad de Salamanca
    info

    Universidad de Salamanca

    Salamanca, España

    ROR https://ror.org/02f40zc51

Libro:
SEMA SIMAI Springer Series

ISSN: 2199-3041 2199-305X

Año de publicación: 2020

Páginas: 1-20

Tipo: Capítulo de Libro

DOI: 10.1007/978-3-030-61795-0_1 GOOGLE SCHOLAR

Referencias bibliográficas

  • Álvarez, D., Prieto, D., Asensio, M.I., Cascón, J.M., Ferragut, L.: Parallel implementation of a simplified semi-physical wildland fire spread model using openMP. In: Martínez de Pisón, F., Urraca, R., Quintián, H., Corchado, E. (eds.) Hybrid Artificial Intelligent Systems. HAIS 2017. Lecture Notes in Computer Science, vol. 10334. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59650-1_22
  • Aponte, C., de Groot, W., Wotton, B.: Forest fires and climate change: causes, consequences and management option. Int. J. Wildland Fire 25(8), I–II (2016). https://doi.org/10.1071/WFv25n8_FO
  • Arellano, S., Vega, J., Ruíz, A., Arellano, A., Álvarez, J., Vega, D., Pérez, E.: Foto-guía de combustibles forestales de Galicia. Versión I, Andavira Editora, S.L. (2016). https://doi.org/10.14195/978-989-26-16-506
  • Asensio, M.I., Ferragut, L.: On a wildland fire model with radiation. Int. J. Numer. Methods Eng. 54(1), 137–157 (2002). https://doi.org/10.1002/nme.420
  • Asensio, M.I., Ferragut, L., Simon, J.: A convection model for fire spread simulation. Appl. Math. Lett. 18, 673–677 (2005). https://doi.org/10.1016/j.aml.2004.04.011
  • Asensio, M.I., Santos-Martín, M.T., Álvarez-León, D., Ferragut, L.: Global sensitivity analysis of fuel-type-dependent input variables of a simplified physical fire spread model. Math. Comput. Simul. 172, 33–44 (2020). https://doi.org/10.1016/j.matcom.2020.01.001
  • Cascón, J.M., Ferragut, L., Asensio, M.I., Prieto, D., Álvarez, D.: Neptuno ++: an adaptive finite element toolbox for numerical simulation of environmental problems. In: XVIII Spanish-French School Jacques- Louis Lions about Numerical Simulation in Physics and Engineering, Las Palmas de Gran Canaria (2018). http://hdl.handle.net/10366/138180
  • Ferragut, L., Asensio, M.I., Montenegro, R., Plaza, A., Winter, G., Serón, F.J.: A model for fire simulation in landscapes. In: Désidéri y otros, J. A. (eds.) Third ECCOMAS Computational Fluid Dynamics Conference, París (Francia), Sept 1996, pp. 111–116. John Wiley & Sons
  • Ferragut, L., Asensio, M.I., Monedero, S.: Modelling radiation and moisture content in fire spread. Commun. Numer. Methods Eng. 23(9), 819–833 (2007). https://doi.org/10.1002/cnm.927
  • Ferragut, L., Asensio, M.I., Monedero, S.: A numerical method for solving convection-reaction-diffusion multivalued equations in fire spread modelling. Adv. Eng. Softw. 38(6), 366–371 (2007). https://doi.org/10.1016/j.advengsoft.2006.09.007
  • Ferragut, L., Montenegro, R., Montero, G., Rodríguez, E., Asensio, M.I., Escobar, J.: Comparison between 2.5-D and 3-D realistic models for wind field adjustment. J. Wind Eng. Indus. Aerodyn. 98, 548–558 (2010). https://doi.org/10.1016/j.jweia.2010.04.004
  • Ferragut, L., Asensio, M.I., Simon, J.: High definition local adjustment model of 3D wind fields performing only 2D computations. Int. J. Numer. Methods Biomed. Eng. 27, 510–523 (2011). https://doi.org/10.1002/cnm.1314
  • Ferragut, L., Asensio, M.I., Cascón, J.M., Prieto, D.: A simplified wildland fire model applied to a real case. In: Advances in Differential Equations and Applications. SEMA SIMAI Springer Series, vol 4, pp. 155–167. Springer International Publishing, Cham (2014). https://doi.org/10.1007/978-3-319-06953-1_16
  • Ferragut, L., Asensio, M.I., Cascón, J.M., Prieto, D.: A wildland fire physical model well suited to data assimilation. Pure Appl. Geophys. 172(1), 121–139 (2015). https://doi.org/10.1007/s00024-014-0893-9
  • Finney, M.: FARSITE: fire area simulator-model development and evaluation. Research Paper RMRS-RP-4 (revised), U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, Ogden (2004)
  • Jolly, W.M., Cochrane, M.A., Freeborn, P.H., Holden, Z.A., Brown, T.J., Williamson, G.J., Bowman, D.M.J.S.: Climate-induced variations in global wildfire danger from 1979 to 2013. Nat. Commun. 6(7537) (2015). https://doi.org/10.1038/ncomms8537
  • Kaur I., Mentrelli A., Bosseur F., Filippi J.B., Pagnini G.: Turbulence and fire-spotting effects into wildland fire simulators. Commun. Nonlinear Sci. Numer. Simul. 39, 300–320 (2016). https://doi.org/10.1016/j.cnsns.2016.03.003
  • Mandel, J., Beezley, J.D., Kochanski, A.K.: Coupled atmosphere wildland fire modeling with WRF 3.3 and SFIRE 2011. Geosci. Model Develop. 4(3), 591–610 (2011). https://doi.org/10.5194/gmd-4-591-2011
  • Martin, J., Hillen, T.: The spotting distribution of wildfires. Appl. Sci. 6, 177–210 (2016). https://doi.org/10.3390/app6060177
  • Morillo, A., Análisis del comportamiento del fuego forestal observado y simulado: estudio del caso del incendio forestal de Osoño (Vilardevós)-Verín-Ourense. Master of Advanced Studies dissertation, Higher Polytechnical College of Lugo, University of Santiago de Compostela (2011) (in Spanish)
  • Pagnini, G., Mentrelli, A.: Modelling wildland fire propagation by tracking random fronts. Nat. Hazards Earth Syst. Sci. 14, 2249–2263 (2014). https://doi.org/10.5194/nhess-14-2249-2014
  • Prieto, D., Asensio, M.I., Ferragut, L., Cascón, J.M.: Sensitivity analysis and parameter adjustment in a simplified physical wildland fire model. Adv. Eng. Softw. 90, 98–106 (2015). https://doi.org/10.1016/j.advengsoft.2015.08.001
  • Prieto, D., Asensio, M.I., Ferragut, L., Cascón, J.M., Morillo, A.: A GIS based fire spread simulator integrating a simplified physical wildland fire model and a wind field model. Int. J. Geograph. Inf. Sci. 31(11), 2142–2163 (2017). https://doi.org/10.1080/13658816.2017.1334889
  • Sardoy, N., Consalvi, J.L., Kaiss, A., Fernandez-Pello, A.C., Porterie, B.: Numerical study of ground-level distribution of firebrands generated by line fire. Combust. Flame 154, 478–488 (2008). https://doi.org/10.1016/j.combustflame.2008.05.006
  • Siegel, R., Howell, J.R.: Thermal Radiation Heat Transfer. McGraw-Hill Inc., New York (1972)
  • Trucchia, A., Egorova, V., Butenko, A., Kaur, I., Pagnini, G.: RandomFront 2.3 a physical parametrization of fire-spotting for operational fire spread models: implementation in WRF-Sfire and response analysis with LSFire+. Geosci. Model Develop. 12(1), 69–87 (2019). https://doi.org/10.5194/gmd-12-69-2019
  • Tymstra, C., Bryce, R., Wotton, B., Taylor, S., Armitage, O.: Development and structure of Prometheus: the Canadian wildland fire growth simulation model, Information Report NOR-X-417, Canadian Forest Service, Northern Forestry Centre (2010). https://d1ied5g1xfgpx8.cloudfront.net/pdfs/31775.pdf
  • Vasconcelos, M., Guertin, D.: Firemap – simulation of fire growth with a geographic information system. Int. J. Wildland Fire 2(2), 87–96 (1992). https://doi.org/10.1071/WF9920087
  • Wang, H.H.: Analysis on downwind distribution of firebrands sourced from a wildland fire. Fire Technol. 47, 321–340 (2011). https://doi.org/10.1007/s10694-009-0134-4