The Potential of Hydrocarbon Chemotaxis to Increase Bioavailability and Biodegradation Efficiency

  1. Lacal, Jesús 1
  1. 1 Universidad de Salamanca
    info

    Universidad de Salamanca

    Salamanca, España

    ROR https://ror.org/02f40zc51

Libro:
Cellular Ecophysiology of Microbe: Hydrocarbon and Lipid Interactions

Editorial: Springer International Publishin

ISBN: 978-3-319-50540-4 978-3-319-50542-8

Año de publicación: 2018

Páginas: 241-254

Tipo: Capítulo de Libro

DOI: 10.1007/978-3-319-50542-8_3 GOOGLE SCHOLAR lock_openAcceso abierto editor

Resumen

Hydrocarbons are simple organic compounds, containing only carbon and hydrogen, but despite their simplicity, they are common contaminants in our environment. This and the risks they pose to human health require remediation strategies. The decomposition of hydrocarbons by microorganisms into less or nontoxic simpler substances has been under study for many years and important advances have been made in this field. Interestingly, cell adherence and surface hydrophobicity, biosurfactant production, motility, and chemotaxis processes are bacterial abilities that reduce the distance between the microorganisms and solid substrates, enhancing bioavailability. Particularly, chemotaxis may enable hydrocarbon-utilizing bacteria to actively seek new substrates once they are depleted in a given contaminated area increasing their bioavailability and biodegradation. This chapter recapitulates major advances in the potential of hydrocarbon chemotaxis to increase bioavailability and biodegradation efficiency.

Referencias bibliográficas

  • Abioye OP (2011) Biological remediation of hydrocarbon and heavy metals contaminated soil, soil contamination. MSc Simone Pascucci (Ed.), INTECH, pp 127–142, ISBN: 978-953-307-647-8
  • Adadevoh JS, Triolo S, Ramsburg CA, Ford RM (2016) Chemotaxis increases the residence time of bacteria in granular media containing distributed contaminant sources. Environ Sci Technol 50:181–187
  • Adamson DT, McDade JM, Hughes JB (2003) Inoculation of a DNAPL source zone to initiate reductive dechlorination of PCE. Environ Sci Technol 37:2525–2533
  • Alexandre G, Greer-Phillips S, Zhulin IB (2004) Ecological role of energy taxis in microorganisms. FEMS Microbiol Rev 28:113–126
  • Benov L, Fridovich I (1996) Escherichia coli Exhibits negative chemotaxis in gradients of hydrogen peroxide, hypochlorite, and N-chlorotaurine: products of the respiratory burst of phagocytic cells. Proc Natl Acad Sci U S A 93:4999–5002
  • Bhushan B, Chauhan A, Samanta SK, Jain RK (2000) Kinetics of biodegradation of p-nitrophenol by different bacteria. Biochem Biophys Res Commun 274:626–630
  • Bhushan B, Halasz A, Thiboutot S, Ampleman G, Hawari J (2004) Chemotaxis-mediated biodegradation of cyclic nitramine explosives RDX, HMX, and CL-20 by Clostridium sp. EDB2. Biochem Biophys Res Commun 316:816–821
  • Bi S, Lai L (2015) Bacterial chemoreceptors and chemoeffectors. Cell Mol Life Sci 72:691–708
  • Binet P, Portal JM, Leyval C (2000) Dissipation of 3–6-ring polycyclic aromatic hydrocarbons in the rhizosphere of ryegrass. Soil Biol Biochem 32:2011–2017
  • Bisht S, Pandey P, Sood A, Sharma S, Bisht NS (2010) Biodegradation of naphthalene and anthracene by chemo-tactically active rhizobacteria of populusdeltoides. Braz J Microbiol 41:922–930
  • Bisht S, Pandey P, Bhargava B, Sharma S, Kumar V, Sharma KD (2015) Bioremediation of polyaromatic hydrocarbons (PAHs) using rhizosphere technology. Braz J Microbiol 46:7–21
  • Das N, Chandran P (2011) Microbial degradation of petroleum hydrocarbon contaminants: an overview. Biotechnol Res Int 2011:941810
  • Dua M, Singh A, Sethunathan N, Johri AK (2002) Biotechnology and bioremediation: successes and limitations. Appl Microbiol Biotechnol 59:143–152
  • Duffy K, Ford RM, Cummings PT (1997) Residence time calculation for chemotactic bacteria within porous media. Biophys J 73:2930–2936
  • Ford RM, Harvey RW (2007) Role of chemotaxis in the transport of bacteria through saturated porous media. Adv Water Resour 30:1608–1617
  • Furuno S, Pazolt K, Rabe C, Neu TR, Harms H, Wick LY (2010) Fungal mycelia allow chemotactic dispersal of polycyclic aromatic hydrocarbon degrading bacteria in water-unsaturated systems. Environ Microbiol 12:1391–1398
  • Gibson DT, Parales RE (2000) Aromatic hydrocarbon dioxygenases in environmental biotechnology. Curr Opin Biotechnol 11:236–243
  • Gilbert D, Jakobsen HH, Winding A, Mayer P (2014) Co-transport of polycyclic aromatic hydrocarbons by motile microorganisms leads to enhanced mass transfer under diffusive conditions. Environ Sci Technol 48:4368–4375
  • Gordillo F, Chávez FP, Jerez CA (2007) Motility and chemotaxis of Pseudomonas sp. B4 towards polychlorobiphenyls and chlorobenzoates. FEMS Microbiol Ecol 60:322–328
  • Grimm AC, Harwood CS (1997) Chemotaxis of Pseudomonas spp. to the polyaromatic hydrocarbon naphthalene. Appl Environ Microbiol 63:4111–4115
  • Hanzel J, Harms H, Wick LY (2010) Bacterial chemotaxis along vapor phase gradients of naphthalene. Environ Sci Technol 44:9304–9310
  • Harms H, Wick LY (2006) Dispersing pollutant-degrading bacteria in contaminated soil without touching it. Eng Life Sci 6:252–260
  • Harwood CS, Parales RE, Dispensa M (1990) Chemotaxis of Pseudomonas putida toward chlorinated benzoates. Appl Environ Microbiol 56:1501–1503
  • Hawkins AC, Harwood CS (2002) Chemotaxis of Ralstoniaeutropha JMP134 (pJP4) to the herbicide 2,4-dichlorophenoxyacetate. Appl Environ Microbiol 68:968–972
  • Iwaki H, Muraki T, Ishihara S, Hasegawa Y, Rankin KN, Sulea T, Boyd J, Lau PC (2007) Characterization of a pseudomonad 2-nitrobenzoate nitroreductase and its catabolic pathway-associated 2-hydroxylaminobenzoate mutase and a chemoreceptor involved in 2-nitrobenzoate chemotaxis. J Bacteriol 189:3502–3514
  • Jimenez-Sanchez C, Wick LY, Ortega-Calvo JJ (2012) Chemical effectors cause different motile behavior and deposition of bacteria in porous media. Environ Sci Technol 46:6790–6797
  • Kim HE, Shitashiro M, Kuroda A, Takiguchi N, Ohtake H, Kato J (2006) Identification and characterization of the chemotactic transducer in Pseudomonas aeruginosa PAO1 for positive chemotaxis to trichloroethylene. J Bacteriol 188:6700–6702
  • Kim HE, Shitashiro M, Kuroda A, Takiguchi N, Kato J (2007) Ethylene chemotaxis in Pseudomonas aeruginosa and other Pseudomonas species. Microbes Environ 22:186–189
  • Krell T, Lacal J, Muñoz-Martínez F, Reyes-Darias JA, Cadirci BH, García-Fontana C, Ramos JL (2011) Diversity at its best: bacterial taxis. Environ Microbiol 13:1115–1124
  • Krell T, Lacal J, Reyes-Darias JA, Jimenez-Sanchez C, Sungthong R, Ortega-Calvo JJ (2013) Bioavailability of pollutants and chemotaxis. Curr Opin Biotechnol 24:451–456
  • Lacal J, García-Fontana C, Muñoz-Martínez F, Ramos JL, Krell T (2010) Sensing of environmental signals: classification of chemoreceptors according to the size of their ligand binding regions. Environ Microbiol 12:2873–2884
  • Lacal J, Muñoz-Martínez F, Reyes-Darías JA, Duque E, Matilla M, Segura A, Calvo JJ, Jímenez-Sánchez C, Krell T, Ramos JL (2011) Bacterial chemotaxis towards aromatic hydrocarbons in Pseudomonas. Environ Microbiol 13:1733–1744
  • Lacal J, Reyes-Darias JA, García-Fontana C, Ramos JL, Krell T (2013) Tactic responses to pollutants and their potential to increase biodegradation efficiency. J Appl Microbiol 114:923–933
  • Lanfranconi MP, Alvarez HM, Studdert CA (2003) A strain isolated from gas oil-contaminated soil displays chemotaxis towards gas oil and hexadecane. Environ Microbiol 5:1002–1008
  • Law AMJ, Aitken MD (2003) Bacterial chemotaxis to naphthalene desorbing from a nonaqueous liquid. Appl Environ Microbiol 69:5968–5973
  • Law AMJ, Aitken MD (2006) The effect of oxygen on chemotaxis to naphthalene by Pseudomonas putida G7. Biotechnol Bioeng 93:457–464
  • Lekmine G, SookhakLari K, Johnston CD, Bastow TP, Rayner JL, Davis GB (2017) Evaluating the reliability of equilibrium dissolution assumption from residual gasoline in contact with water saturated sands. J Contam Hydrol 196:30–42
  • Leungsakul T, Keenan BG, Smets BF, Wood TK (2005) TNT and nitroaromatic compounds are chemoattractants for Burkholderiacepacia R34 and Burkholderia sp. strain DNT. Appl Microbiol Biotechnol 69:321–325
  • Liu X, Parales RE (2009) Bacterial chemotaxis to atrazine and related s-triazines. Appl Environ Microbiol 75:5481–5488
  • Marx RB, Aitken MD (2000) Bacterial chemotaxis enhances naphthalene degradation in a heterogeneous aqueous system. Environ Sci Technol 34:3379–3383
  • Meng L, Li H, Bao M, Sun P (2017) Metabolic pathway for a new strain Pseudomonas synxantha LSH-7′: from chemotaxis to uptake of n-hexadecane. Sci Rep 7:39068
  • Miya RK, Firestone MK (2000) Phenanthrene-degrader community dynamics in rhizosphere soil from a common annual grass. J Environ Qual 29:584–592
  • Mosqueda G, Ramos-González MI, Ramos JL (1999) Toluene metabolism by the solvent-tolerant Pseudomonas putida DOT-T1 strain, and its role in solvent impermeabilization. Gene 232:69–76
  • Mounier J, Camus A, Mitteau I, Vaysse PJ, Goulas P, Grimaud R, Sivadon P (2014) The marine bacterium Marinobacter hydrocarbonoclasticus SP17 degrades a wide range of lipids and hydrocarbons through the formation of oleolytic biofilms with distinct gene expression profiles. FEMS Microbiol Ecol 90:816–831
  • Nijland R, Burgess JG (2010) Bacterial olfaction. Biotechnol J 5:974–977
  • Oen AM, Beckingham B, Ghosh U, Kruså ME, Luthy RG, Hartnik T, Henriksen T, Cornelissen G (2012) Sorption of organic compounds to fresh and field-aged activated carbons in soils and sediments. Environ Sci Technol 46:810–817
  • Ortega-Calvo JJ, Marchenko AI, Vorobyov AV, Borovick RV (2003) Chemotaxis in polycyclic aromatic hydrocarbon-degrading bacteria isolated from coal-tar- and oil-polluted rhizospheres. FEMS Microbiol Ecol 44:373–381
  • Pandey G, Jain RK (2002) Bacterial chemotaxis toward environmental pollutants: role in bioremediation. App Environ Microbiol 68:5789–5795
  • Pandey J, Chauhan A, Jain RK (2009) Integrative approaches for assessing the ecological sustainability of in situ bioremediation. FEMS Microbiol Rev 33:324–375
  • Pandey J, Sharma NK, Khan F, Ghosh A, Oakeshott JG, Jain RK, Pandey G (2012) Chemotaxis of Burkholderia sp. strain SJ98 towards chloronitroaromatic compounds that it can metabolise. BMC Microbiol 12:19
  • Parales RE (2004) Nitrobenzoates and aminobenzoates are chemoattractants for Pseudomonas strains. Appl Environ Microbiol 70:285–292
  • Parales RE, Harwood CS (2002) Bacterial chemotaxis to pollutants and plant-derived aromatic molecules. Curr Opin Microbiol 5:266–273
  • Parales RE, Ditty JL, Harwood CS (2000) Toluene-degrading bacteria are chemotactic towards the environmental pollutants benzene, toluene, and trichloroethylene. Appl Environ Microbiol 66:4098–4104
  • Philips J, Hamels F, Smolders E, Springael D (2012) Distribution of a dechlorinating community in relation to the distance from a trichloroethene dense nonaqueous phase liquid in a model aquifer. FEMS Microbiol Ecol 81:636–647
  • Samanta SK, Bhushan B, Chauhan A, Jain RK (2000) Chemotaxis of a Ralstonia sp. SJ98 toward different nitroaromatic compounds and their degradation. Biochem Biophys Res Commun 269:117–123
  • Sampedro I, Parales RE, Krell T, Hill JE (2015) Pseudomonas chemotaxis. FEMS Microbiol Rev 39:17–46
  • Sandhu A, Halverson LJ, Beattie GA (2007) Bacterial degradation of airborne phenol in the phyllosphere. Environ Microbiol 9:383–392
  • Scow KM, Hicks KA (2005) Natural attenuation and enhanced bioremediation of organic contaminants in groundwater. Curr Opin Biotechnol 16:246–253
  • Semple KT, Doick KJ, Wick LY, Harms H (2007) Microbial interactions with organic contaminants in soil: definitions, processes and measurement. Environ Pollut 150:166–176
  • Shitashiro M, Tanaka H, Hong CS, Kuroda A, Takiguchi N, Ohtake H, Kato J (2005) Identification of chemosensory proteins for trichloroethylene in Pseudomonas aeruginosa. J Biosci Bioeng 99:396–402
  • Singh R, Olson M (2010) Kinetics of trichloroethylene and toluene toxicity to Pseudomonas putida F1. Environ Toxicol Chem 29:56–63
  • Sleep BE, Seepersad DJ, Kaiguo MO, Heidorn CM, Hrapovic L, Morrill PL, McMaster ML, Hood ED, Lebron C, Lollar BS, Major DW, Edwards EA (2006) Biological enhancement of tetrachloroethene dissolution and associated microbial community changes. Environ Sci Technol 40:3623–3633
  • Sung Y, Fletcher KE, Ritalahti KM, Apkarian RP, Ramos-Hernández N, Sanford RA, Mesbah NM, Löffler FE (2006) Geobacterlovleyi sp. nov. strain SZ, a novel metal-reducing and tetrachloroethene-dechlorinating bacterium. Appl Environ Microbiol 72:2775–2782
  • Tejeda-Agredano MC, Gallego S, Niqui-Arroyo JL, Vila J, Grifoll M, Ortega-Calvo JJ (2011) Effect of interface fertilization on biodegradation of polycyclic aromatic hydrocarbons present in nonaqueous-phase liquids. Environ Sci Technol 45:1074–1081
  • Tremaroli V, VacchiSuzzi C, Fedi S, Ceri H, Zannoni D, Turner RJ (2010) Tolerance of Pseudomonas pseudoalcaligenes KF707 to metals, polychlorobiphenyls and chlorobenzoates: effects on chemotaxis-, biofilm- and planktonic-grown cells. FEMS Microbiol Ecol 74:291–301
  • Tsuda M, Iino T (1990) Naphthalene degrading genes on plasmid NAH7 are on a defective transposon. Mol Gen Genet 223:33–39
  • Vardar G, Barbieri P, Wood TK (2005) Chemotaxis of Pseudomonas stutzeri OX1 and Burkholderiacepacia G4 toward chlorinated ethenes. Appl Microbiol Biotechnol 66:696–701
  • Velasco-Casal P, Wick LY, Ortega-Calvo JJ (2008) Chemoeffectors decrease the deposition of chemotactic bacteria during transport in porous media. Environ Sci Technol 42:1131–1137
  • Wang X, Long T, Ford RM (2012) Bacterial chemotaxis toward a NAPL source within a pore-scale microfluidic chamber. Biotechnol Bioeng 109:1622–1628
  • Wang X, Atencia J, Ford RM (2015) Quantitative analysis of chemotaxis towards toluene by Pseudomonas putida in a convection-free microfluidic device. Biotechnol Bioeng 112:896–904
  • Wang X, Lanning LM, Ford RM (2016) Enhanced retention of chemotactic bacteria in a pore network with residual NAPL contamination. Environ Sci Technol 50:165–172
  • Yang Y, McCarty PL (2002) Comparison between donor substrates for biologically enhanced tetrachloroethene DNAPL dissolution. Environ Sci Technol 36:3400–3404