El cerebro estresado y su implicación en el comportamiento desadaptativo durante la pandemia por COVID-19

  1. Fernando Gordillo León 1
  1. 1 Universidad de Salamanca
    info

    Universidad de Salamanca

    Salamanca, España

    ROR https://ror.org/02f40zc51

Revista:
Análisis y modificación de conducta

ISSN: 0211-7339 2173-6855

Año de publicación: 2023

Volumen: 49

Número: 180

Páginas: 69-81

Tipo: Artículo

DOI: 10.33776/AMC.V49I180.7591 DIALNET GOOGLE SCHOLAR lock_openDialnet editor

Otras publicaciones en: Análisis y modificación de conducta

Resumen

Los seres humanos se enfrentan a diario a situaciones estresantes ante las que deben responder con eficacia para sobrevivir y adaptarse al entorno. Sin embargo, la elevada intensidad y persistencia del estresor, como sucedió durante la pandemia del COVID-19, podría tener un efecto negativo sobre la neurología, cognición y conducta de las personas. Estructuras como la amígdala y la corteza prefrontal se ven afectadas por el estrés agudo y persistente, siendo la base explicativa de las actitudes y conductas desadaptativas que ocurren en situaciones de emergencia. Procesos como la latencia entre el estrés y la toma de decisiones, la reevaluación cognitiva, y la imitación, todos dependientes de la corteza prefrontal y la amígdala, permiten explicar la rápida difusión de las fake news, el negacionismo, y las compras compulsivas durante la pandemia del COVID-19. A partir del análisis realizado de la información, se pueden establecer unas pautas de abordaje, basadas en los conocimientos neurocognitivos, con las que afrontar situaciones de emergencia: 1) Monitorear el nivel de estrés poblacional; 2) Gestionar la información trasmitida (intensidad/frecuencia); 3) Evitar contradicciones informativas (incertidumbre); 4) Promover modelos de imitación; 5) Establecer sistemas de ayuda a grupos vulnerables; 6) Facilitar el ocio controlado.

Referencias bibliográficas

  • Arnsten, A. F. T. (2018). Stress signalling pathways that impair prefrontal cortex structure and function. Nature Reviews Neuroscience, 10, 410-422.
  • Ayers, J. W., Leas, E. C., Johnson, D. C., Poliak ,A., Althouse, B. M., Dredze, M. y Nobles, A. (2020).Internet Searches for acute anxiety during the early stages of the COVID-19 Pandemic. JAMA International Medicine, 180 1706-1707.
  • Berghorst, L. H., Bogdan, R., Frank, M. J. y Pizzagalli, D. A. (2013). Acute stress selectively reduces reward sensitivity. Frontiers in Human Neuroscience, 7, 133.
  • Bilinski, A., y`Emanuel, E. J. (2020). COVID-19 and excess all-cause mortality in the US and 18 comparison countries. JAMA, 324(20), 2100-2102.
  • Blankenshipa, S. L., Botdorfa, M., Rigginsab, T. y Doughertya, L. R. (2019). Lasting effects of stress physiology on the brain: Cortisol reactivity during preschool predicts hippocampal functional connectivity at school age. Developmental Cognitive Neuroscience, 40, 100736.
  • Boyd, R. y Richerson, P. (1985). Culture and the evolutionary process. University of Chicago, Chicago.
  • Brass, M., Ruby, P. y Splenger, S. (2009). Inhibition of imitative behaviour and social cognition. Philosophical Transactions of the Royal Society B: Biological Sciences, 364, 2359-2367.
  • Brown, T. I., Gagnon, S.A. y Wagner, AD. (2020). Stress disrupts human hippocampalprefrontal function during prospective spatial navigation and hinders flexible behavior. Current Biology, 30, R439-R441.
  • Burrage, E., Marshall, K.L, Santanam, N. y Chantler, P.D. (2018). Cerebrovascular dysfunction with stress and depression. Brain Circulation, 4, 43-53.
  • Cerqueira, J.J., Mailliet, F., Almeida, O.F., Jay, T.M. y Sousa, N. (2007). The prefrontal cortex as a key target of the maladaptive response to stress. Journal of Neuroscience, 27, 2781–2787.
  • Coehoorn, C. J., Stuart-Hill, L. A., Abimbola, W., Neary, J.P. y Krigolson, O.E. (2020). Firefighter neural function and decisionmaking following rapid heat stress. Fire Safety Journal, 118, 103240.
  • Coltheart, M. (2010). The neuropsychology of delusions. Annals of the New York Academy of Sciences journal, 1191, 16-26.
  • Cornwall, W. (2020). Just 50% of Americans plan to get a COVID-19 vaccine: here’s how to win over the rest. Science. Posted June 30, 2020.
  • Dantzer, R. (2006). (2006). Cytokine, sickness behavior, and depression. Neurologic Clinics, 24, 441-460.
  • Datta, D. y Arnsten, A.F.T. (2019). Loss of prefrontal cortical higher cognition with uncontrollable stress: Molecular mechanisms, changes with age, and relevance to treatment. Brain Science, 9(5), 113.
  • De Kloet, E.R, Oitzl, M.S. y Joels, M. (1999). Stress and cognition: are corticosteroids good or bad guys? Trends in Neurosciences, 22, 422-426.
  • Duvarci, S. y Pare, D. (2014). Amygdala microcircuits controlling learned fear. Neuron, 82, 966-980.
  • Forbes, C.E. y Grafman, J. (2010). The Role of the human prefrontal cortex in social cognition and moral judgment. Annual Review of Neuroscience, 3, 299-324.
  • Forte, G., Favieri, F., Tambelli, R. y Casagrande, M. (2020). COVID-19 Pandemic in the Italian population: Validation of a PostTraumatic Stress Disorder Questionnaire and prevalence of PTSD symptomatology. International Journal of Environmental Research and Public Health, 17, 4151.
  • Galef, B.G. y Jr, Whiskin, E.E.(2004). Effects of environmental stability and demonstrator age on social learning of food preferences by young Norway rats. Animal Behaviour, 68, 897-902.
  • Garrison, J.R., Fernández-Egea, E., Zaman, R., Agius, M., Simons, J.S. (2017). Reality monitoring impairment in schizophrenia reflects specific prefrontal cortex dysfunction. NeuroImage: Clinical, 25, 260-268.
  • Goldfarb, E.V. (2020). Participant stress in the COVID-19 era and beyond. Neuroscience, 21, 663.
  • Golkar, A., Johansson, E., Kasahara, M., Osika, W., Perski, A. y Savic, I. (2014). The influence of work-related chronic stress on the regulation of emotion and on functional connectivity in the brain. PLOS One, 9, e104550.
  • González-Sanguino, C., Ausín, B., Castellanos, M.Á., Saiz, J., López-Gómez, A., Ugidos, C. y Muñoz, M. (2020). Mental health consequences during the initial stage of the 2020 Coronavirus pandemic (COVID-19) in Spain. Brain,Behavior, and Immunity, 87, 72-176.
  • Gordillo, F. y Mestas, L. (2021). El animal humano y su comportamiento en emergencias. Revista Digital Universitaria, 22.
  • Grüter, C. y Ratnieks, F. (12011). Honeybee foragers increase the use of waggle dance information when private information becomes unrewarding. Animal behaviour, 81, 949-954.
  • Hanson, J.L., Albert, D., Iselin, A.M.R., Carre, J.M., Dodge, K.A. y Hariri, A.R. (2016). Cumulative stress in childhood is associated with blunted reward-related brain activity in adulthood. Social Cognitive and Affective Neuroscience, 11, 405-412.
  • Harris, K. D. y Mrsic-Flogel, T. D. (2013). Cortical connectivity and sensory coding. Nature, 503, 51-58. Hölzel, B.K., Carmody, J., Evans, K.C., Hoge, E.A., Dusek, J.A., Morgan, L., Pitman, R.K. y Lazar, S.W. (2010). Stress reduction correlates with structural changes in the amygdala. Social Cognitive and Affective Neuroscience, 5(1), 11-7.
  • Johnson, F.K., Delpech, J.C., Thompson, G.J., Wei, L., Hao, J., Herman, P., Hyder, F. y Kaffman, A. (2018). Amygdala hyper-connectivity in a mouse model of unpredictable early life stress. Translational psychiatry, 8, 49.
  • Jovanovic, H., Perski, A., Berglund, H. y Savic, I. (2011).Chronic stress is linked to 5-HT(1A) receptor changes and functional disintegration of the limbic networks. NeuroImage, 55, 1178-1188.
  • Kataoka, H., Shima, Y., Nakajima, K. y Nakamura, K. (2020). A central master driver of psychosocial stress responses in the rat. Science, 367, 1105-1112.
  • Kudielka, B.M., Kirshbaum, C. (2004). Biological bases of the stress response. In Stress and Addiction: Biological and Psychological Mechanisms, ed. M. Al’Absi (Amsterdam: Elsevier): 3-19.
  • Kumar, P., Berghorst, L.H., Nickerson, L.D., Dutra, S.J, Goer, F.K., Greve, D.N. y Pizzagalli, D. A. (2014). Differential effects of acute stress on anticipatory and consummatory phases of reward processing. Neuroscience, 266, 1-12.
  • Kvetnansky, R., Sabban, E.L. y Palkovits, M. (2009). Catecholaminergic systems in stress: structural and molecular genetic approaches. Physiological Reviews, 89, 535-606.
  • LeDoux JE. (1996). The emotional brain. Simon and Schuster: New York
  • Lefebvre, L. y Palameta, B. (1988). Mechanisms, ecology, and population difusión of socially learned, food-finding behavior in feral pigeons. En T. R. Zentall y B. G. Galef, Jr. (Eds.), Social learning: Psychological and biological perspectives (p. 141–164).
  • Lawrence Erlbaum Associates, Inc. Lighthall, N., Sakaki, M., Vasunilashorn, S., Nga, L., Somayajula, S., Chen, E., Samii, N. y Mather, M. (2011). Gender differences in reward-related decisión processing under stress. Social Cognitive and Affective Neuroscience, 7, 476-84.
  • Liston, C., McEwen, B.S. y Casey, B. J. (2009). Psychosocial stress reversibly disrupts prefrontal processing and attentional control. PNAS, 106, 912-917.
  • Liu, C.H, Zhang, E., Wong, G.T.F., Hyun, S. y Hahm, H. (2020b). Hahm factors associated with depression, anxiety, and PTSD symptomatology during the COVID-19 pandemic: Clinical implications for U.S. young adult mental health. Psychiatry Research, 290, 113172.
  • Liu, N., Zhang, F., Wei, C., Jia, Y., Shang, Z., Sun, L., Wu, L., Sun, Z., Zhoy, Y., Wang, Y. y Liu, W. (2020a). Prevalence and predictors of PTSS during COVID-19 outbreak in China hardest-hit areas: gender differences matter. Psychiatry Research, 287, 112921.
  • Liu, W-Z., Zhang, W.H., Zheng, Z.H., Zou, J.X., Liu, X.X., Huang, S.H., You, W.J., He, Y., Zhang, J.Y., Wang, X.D. y Pan, B.X. (2020c). Identification of a prefrontal cortex-toamygdala pathway for chronic stressinduced anxiety. Nature Communications, 11, 2221.
  • Lupien, S.J., Juster, R.P., Raymond, C. y Marin, M.F. (2018). The effects of chronic stress on the human brain: from neurotoxicity, to vulnerability, to opportunity. Frontiers in Neuroendocrinology, 49, 91-105.
  • McKlveen, J. M., Myers, B. y Herman, J.P (2015). The Medial Prefrontal Cortex: Coordinator of autonomic, neuroendocrine and behavioural responses to stress. Journal of Neuroendocrinology, 27, 446-456.
  • Meltzoff, A., Decety, J. (2003). What imitation tells us about social cognition: a rapprochement between developmental psychology and cognitive neuroscience. Philosophical Transactions of the Royal Society B: Biological Sciences, 358, 491-500
  • Mendoza-Halliday, D. y Martinez-Trujillo, J.C. (2017). Neuronal population coding of perceived and memorized visual features in the lateral prefrontal cortex. Nature Communications, 8, 15471.
  • Miller, B. L. (2020). Science Denial and COVID Conspiracy theories potential neurological mechanisms and possible responses. JAMA, 324(22), 2255-2256.
  • Myers, B., McKlveen, J.M. y Herman, J.P. (2014). Glucocorticoid actions on synapses, circuits, and behavior: Implications for the energetics of stress. Frontiers in Neuroendocrinology, 35, 180-196.
  • Negrón-Oyarzo, I., Aboitiz, F. y Fuentealba, P. (2016). Impaired functional connectivity in the prefrontal cortex: a mechanism for chronic stress-induced neuropsychiatric disorders. Neural Plasticity, 7539065.
  • Odriozola-González, P, Planchuelo-Gómez, A. y Irurtia, M.J. (2020). Psychological symptoms of the outbreak of the COVID-19 confinement in Spain. Journal of Health Psychology, 27(4), 825-835.
  • Oken, B., Chamine, I. y Wakeland, W. (2015). A systems approach to stress, stressors and resilience in humans. Behavioural Brain Research, 282, 144-154.
  • Ortega, S. (2019). Activación emocional en sujetos humanos: procedimientos para la inducción experimental de estrés. Psicologia USP, 30, e180176.
  • Pessiglione, M. y Delgado, M.R. (2015). The good, the bad and the brain: Neural correlates of appetitive and aversive values underlying decision making. Current Opinion in Behavioral Sciences, 5, 78-84.
  • Pocelli, A.J. y Delgado, M.R. (2017). Stress and decision making: Effects on valuation, learning, and risk-taking. Current Opinion in Behavioral Sciences, 14, 33-39.
  • Porcelli, A.J., Lewis, A.H. y Delgado, M.R. (2012). Acute stress influences neural circuits of reward processing. Frontiers in Neuroscience, 6, 157.
  • Pruessner, M., Pruessner, J., Hellhammer, D., Piked, B. y Lupien, S. (2007). The associations among hippocampal volume, cortisol reactivity, and memory performance in healthy young men. Psychiatry Research: Neuroimaging, 155, 1-10.
  • Ritchie, K, Chan, D. y Watermeyer, T. (2020). The cognitive consequences of the COVID-19 epidemic: collateral damage? Brain Communications, 2, fcaa069.
  • Rodríguez-Rey, R., Garrido-Hernansaiz, H. y Collado, S. (2020). Psychological impact and associated factors during the initial stage of the coronavirus (COVID-19) pandemic among the general population in Spain. Frontiers in Psychology, 11, 1540.
  • Savic, I., Perski, A., Osika, W. (2018). MRI shows that exhaustion syndrome due to chronic occupational stress is associated with partially reversible cerebral changes. Cerebral Cortex, 28, 894-906.
  • Savic, I. (2015). Structural changes of the brain in relation to occupational stress. Cerebral Cortex, 25, 1554-1564.
  • Simons, J. S., Garrison, J.R. y Johnson, M.K. (2017). Brain mechanisms of reality monitoring. Trends in Cognitive Sciences, 21(6), 462-473.
  • Simpson, E., Murray, L., Paukner, A. y Ferrari, P.F. (2014). The mirror neuron system as revealed through neonatal imitation: presence from birth, predictive power and evidence of plasticity. Philosophical Transactions of the Royal Society B: Biological Sciences, 369, 20130289.
  • Skau, S., Jonsdottir, I.H., Dahlman, A.S., Johansson, B.J. y Kuhn, H.G. (2021). Exhaustion disorder and altered brain activity in frontal cortex detected with fNIRS. The International Journal on the Biology of Stress, 24, 64-75.
  • Soares, J. M., Sampaio, A., Ferreira, L. M., Santos, N. C., Marques, F., Palha, J. A., Cerqueira, J. J. y Sousa, N. (2012). Stress-induced changes in human decision-making are reversible. Translational Psychiatry, 2, e131.
  • Sousa, N., Lukoyanov, N.V., Madeira, M.D., Almeida, O.F. y Paula-Barbosa, M.M. (2000). Reorganization of the morphology of hippocampal neurites and synapses after stress-induced damage correlates with behavioral improvement. Neuroscience, 97, 253-266
  • Speisman, J. C., Lazarus, R.S., Mordkoff, A. y Davison, L. (1964). Experimental reduction of stress based on ego-defense theory. Journal of Psychopathology and Clinical Science, 68, 367-380.
  • Starcke, K. y Brand, M. (2012). Decision making under stress. Neuroscience & Biobehavioral Reviews, 36, 1228-1248.
  • Vidal-Gonzalez, I., Vidal-Gonzalez, B., Rauch, S.L. y Quirk, G.J. (2006). Microstimulation reveals opposing influences of prelimbic and infralimbic cortex on the expression of conditioned fear. Learning & Memory, 13, 728-733.
  • Webster, M.M. y Laland, K.N. (2008). Social learning strategies and predation risk: minnows copy only when using private information would be costly. Proceedings of the Royal Society B: Biological Sciences, 275, 2869-2876.
  • Wiblea, C.G., Andersona, J., Shentona, M.E., Kricuna, A., Hirayasua, Y., Tanakaa, S., Levitta, J.J., O’Donnella, B.F, Kikinise, R., Jolesze, F.A. y McCarleya, R.W. (2001). Psychiatry Research, 108, 65-78.
  • Yamakawa, K., Ohira, H., Matsunaga, M,. Isow, T. (2016). Prolonged effects of acute stress on decision-making under risk: A human psychophysiological study. Frontiers in Human Neuroscience, 10, 444.
  • Yerkes, R.M. y Dodson, J,D. (1908). The relation of strengh of stimulus to rapidity of habitformation. Journal of Comparative and Neurologic Psychology, 18, 459-489.
  • Zhang, X., Ge, T.T., Yin, G,. Cui, R., Zhao, G. y Yang, W. (2018). Stress-Induced functional alterations in amygdala: implications for neuropsychiatric diseases. Frontiers in Neuroscience, 12, 367